
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE

PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)
DATABASE AND APPLICATION PROGRAM FOR THE

TURKISH NAVY FRIGATES

by

Yuksel Can

March 2000

Thesis Advisors: Thomas Wu
Lee Edwards

Approved for public release; distribution is unlimited.

DTlCQITALnTIlirSPECJT!©«

20000622 028
_y

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (leave Wait*) 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE: DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE PERSONNEL,
OPERATIONS, EQUIPMENT, AND TRAINING (POET) DATABASE AND APPLICATION PROGRAM
FOR THE TURKISH NAVY FRIGATES

6. AUTHOR Can, Yuksel

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Turkish Navy frigates have a challenging mission, which encompasses tactical, operational and
administrative tasks. Lacking an automated information infrastructure hinders the ships' ability to efficiently perform the
administrative activities, to generate the required reports quickly and to make effective decisions based on this
information. The objective of this thesis is to design and implement the Personnel, Operations, Equipment, and Training
(POET) Database and Application Program for the Turkish Navy frigates and to analyze the potential benefits that will
be obtained by using this system. The POET database system will provide the Turkish Navy frigates with an automated
information system that will support the administrative activities, release manpower to perform other duties and reduce
the productive power loss by increasing the availability, accuracy, and consistency of the data. The thesis covers the
analysis of requirements, conceptual database design using Semantic Data Model, logical database design on Microsoft
Access DBMS, and implementation of the application program using Java and JDBC API. The result of this study is a
functional application that will eliminate most of the current problems onboard the frigates and result in considerable
savings of personnel power and time while providing the required information to the command quickly.

14. SUBJECT TERMS Database, Relational Database System, Semantic Data Model, Java, JDBC,
System Maintenance, Design, Implementation and Analysis of Information Systems

IS. NUMBER OF PAGES
293

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION, AND ANALYSIS OF THE
PERSONNEL, OPERATIONS, EQUIPMENT, AND TRAINING (POET)

DATABASE AND APPLICATION PROGRAM FOR THE
TURKISH NAVY FRIGATES

Yuksel Can
Lieutenant Junior Grade, Turkish Navy

B.S., Turkish Naval Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

and

MASTER OF SCIENCE IN SYSTEMS MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author:

Approved by:

Lee Edwards, Thesis Advisor

Dan Boger/Chairman, DepaTöhennaf Computer Science

Reuben Harris, Chairman, Systems Management Department

in

IV

ABSTRACT

The Turkish Navy frigates have a challenging mission, which encompasses

tactical, operational and administrative tasks. Lacking an automated information

infrastructure hinders the ships' ability to efficiently perform the administrative activities,

to generate the required reports quickly and to make effective decisions based on this

information.

The objective of this thesis is to design and implement the Personnel, Operations,

Equipment, and Training (POET) Database and Application Program for the Turkish

Navy frigates and to analyze the potential benefits that will be obtained by using this

system. The POET database system will provide the Turkish Navy frigates with an

automated information system that will support the administrative activities, release

manpower to perform other duties and reduce the productive power loss by increasing the

availability, accuracy, and consistency of the data.

The thesis covers the analysis of requirements, conceptual database design using

Semantic Data Model, logical database design on Microsoft Access DBMS, and

implementation of the application program using Java and JDBC API. The result of this

study is a functional application that will eliminate most of the current problems onboard

the frigates and result in considerable savings of personnel power and time while

providing the required information to the command quickly.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. OBJECTIVE 2

C. METHODOLOGY 3

1. Requirements Analysis 3

2. " Conceptual Database Design 4

3. Logical Database Design 4

4. Physical Database Design 5

5. System Analysis and Evaluation 5

D. ORGANIZATION OF THESIS 5

II. BACKGROUND 9

A. DATABASE SYSTEMS 9

1. Benefits of the Database Approach 11

2. Data Models, Schemas, and Instances 20

3. DBMS Architecture 22

B. THE RELATIONAL DATABASE MODEL 23

1. Relational Model Concepts 24

2. Relational Model Constraints 31

3. Update Operations on Relations 34

4. Relational Algebra 36

C. STRUCTURED QUERY LANGUAGE 40

1. Data Definition in SQL 41

2. Queries in SQL 43

3. Update Statements in SQL 46

4. Views in SQL 48

vn

5. Processing SQL Statements ...49

6. SQL Techniques 51

D. NORMALIZATION 56

1. Functional Dependencies 57

2. Keys 59

3. Update Anomalies 60

4. Normal Forms 62

5. Summary 69

E. ACCESS 97 70

1. Features of Access 97 71

2. Requirements for Access 97 77

3. Database Objects and Views in Access 97 78

III. SEMANTIC DATA MODEL 83

A. INTRODUCTION 83

B. SEMANTIC OBJECTS 85

1. Attributes 86

2. Attribute Cardinality 88

3. Paired Attributes 89

4. Object Identifiers 89

5. Attribute Domains 90

C. TYPES OF SEMANTIC OBJECTS 90

1. Simple Objects 90

2. Composite Objects 91

3. Compound Objects 92

4. Hybrid Objects 92

5. Association Objects 93

viu

6. Parent/Subtype Objects 95

7. Archetype Aversion Objects 97

D. TRANSFORMATION OF SEMANTIC OBJECTS INTO RELATIONS 98

1. Transformation of Simple Objects 98

2. Transformation of Composite Objects 99

3. Transformation of Compound Objects 100

4. Transformation of Hybrid Objects 103

5. Transformation of Association Objects 106

6. Transformation of Parent/Subtype Objects 108

7. Transformation of Archetype/Version Objects 109

IV. JAVA AND JAVA DATABASE CONNECTIVITY (JDBC) Ill

A. JAVA Ill

B. ADVANTAGES OF JAVA 113

1. Java is Portable 114

2. Java is Object-Oriented 114

3. Java Makes It Easy to Write Correct Code 115

4. Java Includes a Library of Classes and Interfaces 117

5. Java is Extensible 118

6. Java is Secure 118

7. Java is Multithreaded 119

8. Java Performs Well ..120

9. Java Scales Well 120

10. Java is Distributed 121

11. Java is Robust 121

12. Java is Dynamic121

IX

C JDBC 122

1. Loading the Driver 122

2. Establishing a Connection with the Database 123

3. Sending SQL Statements 123

4. Processing the Results 124

D. JDBC CLASSES AND INTERFACES 125

1.. DriverManager Class 125

2. Connection Interface 126

3. Statement Interface 126

4. PreparedStatement Interface 128

5. CallableStatement Interface 129

6. ResultSet Interface 129

7. ResultSetMetaData Interface 131

8. DatabaseMetaData Interface 132

E. JDBC AND CLIENT/SERVER MODELS 133

F. JDBC DRIVERS 135

1. JDBC-ODBC Bridge plus ODBC Driver 136

2. Native-API partly-Java Driver 137

3. JDBC-Net pure Java Driver 138

4. Native-protocol pure Java Driver 138

5. Driver Selection 139

REQUIREMENTS ANALYSIS FOR POET DATABASE 141

A. DATABASE DEVELOPMENT PROCESS 141

1. Requirements Collection and Analysis ; 141

2. Conceptual Database Design 144

3. Logical Database Design 145

4. Physical Database Design 146

B. REQUIREMENTS ANALYSIS FOR POET DATABASE 147

1. Ship Object -. 147

2. Department Object 148

3. Division Object 148

4. Personnel Object 148

5. Training Object 150

6. Operation Object 150

7. Equipment Object 151

C. DATA DICTIONARY FOR POET DATABASE 152

VI. LOGICAL DATABASE DESIGN FOR POET DATABASE 153

A. RELATIONAL TABLES OF POET DATABASE 153

1. Ship Relation 155

2. Overhauls Relation 156

3. Department Relation 156

4. Division Relation 157

5. Personnel Relation , 157

6. Courses-To-Take Relation 158

7. Courses-Taken Relation 159

8. Assignments Relation 159

9. Foreign-Languages Relation 160

10. Training Relation 160

11. Operation Relation 161

12. Events Relation 161

13. Port-Visits Relation 162

14. Equipment Relation 162

15. Failures Relation 163

XI

B. POET DATABASE RELATIONSHIPS 163

VII. IMPLEMENTATION OF POET DATABASE AND

DEVELOPMENT OF APPLICATION PROGRAM 165

A. POET DATABASE IMPLEMENTATION 165

B. APPLICATION PROGRAM IMPLEMENTATION 168

1. Input Forms 170

2. Update Forms 171

3. Tables 173

4. Reports... 174

5. Queries 175

VIII. SYSTEMS IMPLEMENTATION AND SUPPORT 179

A. SYSTEMS MAINTENANCE180

B. QUALITY ASSURANCE 182

1. Testing 182

2. Verification 182

3. Validation 183

4. Certification 183

5. Testing Strategies 184

C. TRAINING 185

D. CONVERSION 187

1. Parallel Systems 187

2. Direct Conversion 188

3. Pilot Approach 189

xu

4. Phase-In Method 189

E. SYSTEMS RELIABILITY 190

IX. ANALYSIS OF POET DATABASE SYSTEM 191

A. CURRENT SITUATION 191

B. FILE PROCESSING SYSTEMS 193

1. Data Redundancy 193

2. Data Inconsistency 193

3. Limited Sharing of Data194

4. Program/Data Dependency 194

5. Inflexibility of Information 195

6. Data Isolation 195

7. Difficulty in Representing Data 195

8. Difficulty in Information Resource Management 196

C. DATABASE PROCESSING SYSTEMS 196

1. Minimum Data Redundancy 197

2. Improved Data Sharing 198

3. Increased Data Availability 198

4. Cost Reduction 198

5. Flexibility in Data Access 198

6. Advanced Security and Integrity 199

7. Program/Data Independence 199

8. Dynamic Structure 200

D. BENEFITS OF THE POET DATABASE SYSTEM 200

1. Technical Aspect 200

2. Manpower Aspect 201

3. Decision Making Aspect 202

xiii

E. INSTALLATION OF THE POET DATABASE SYSTEM 203

1. Training 203

2. Conversion 204

3. Integration 206

F. ASSESSING THE IMPACTS OF COMPUTER

TECHNOLOGY IN ORGANIZATIONS 206

G. CONCLUSION.. 208

X. CONCLUSIONS 211

A. SYNOPSIS 211

B. FUTURE ENHANCEMENTS 213

APPENDIX A: SEMANTIC OBJECTS 215

APPENDIX B: DOMAIN SPECIFICATIONS 225

APPENDIX C: RELATIONAL TABLES 239

APPENDIX D: RELATIONSHIP DIAGRAM ...243

APPENDIX E: APPLICATION PROGRAM SCREEN SHOTS 245

APPENDIX F: APPLICATION PROGRAM CODE 267

LIST OF REFERENCES 429

INITIAL DISTRIBUTION LIST 431

xiv

LIST OF FIGURES

Figure 2.1: University Database 26

Figure 2.2: STUDENT Relation 28

Figure 2.3: ACTIVITY Relation 60

Figure 3.1: Semantic Object Diagram 87

Figure 3.2: EQUIPMENT Simple Object 91

Figure 3.3: HOTEL-BILL Composite Object 91

Figure 3.4: BOOK and AUTHOR Compound Objects 92

Figure 3.5: SALES-ORDER Hybrid Object 93

Figure 3.6: FLIGHT, AIRPLANE, and PILOT Semantic Objects 94

Figure 3.7: EMPLOYEE Supertype and MANAGER Subtype Objects 95

Figure 3.8: Exclusive Subtypes 96

Figure 3.9: TEXTBOOK Archetype and EDITION Version Objects 97

Figure 3.10 (a): EQUIPMENT Simple Object 98

Figure 3.10 (b): EQUIPMENT Relation 98

Figure 3.11(a): HOTEL-BILL Composite Object 99

Figure 3.11 (b): HOTEL-BILL and LINEITEM Relations 100

Figure 3.12 (a): One-to-One Compound Objects 101

Figure 3.12(b): MEMBER and LOCKER Relations 101

Figure 3.13 (a): One-to-Many Compound Objects 102

Figure 3.13(b): EQUIPMENT and REPAIR Relations 102

Figure 3.14 (a): BOOK and AUTHOR Compound Objects 103

Figure 3.14 (b): BOOK, AUTHOR, and BOOK-AUTHOR-INTERSECTION

Relations 103

Figure 3.15 (a): SALES-ORDER Hybrid Object and ITEM, CUSTOMER

and SALESPERSON Compound Objects 104

Figure 3.15 (b): SALES-ORDER, ITEM, CUSTOMER,

SALESPERSON, and LINEITEM Relations 105

xv

Figure 3.16 (a): FLIGHT Association Object and AIRPLANE and

PILOT Compound Objects 107

Figure 3.16 (b): AIRPLANE, PILOT, and FLIGHT Relations 108

Figure 3.17 (a): EMPLOYEE Supertype and MANAGER Subtype Objects 108

Figure 3.17(b): EMPLOYEE and MANAGER Relations 109

Figure 3.18 (a): TEXTBOOK Archetype and EDITION Version Objects 109

Figure 3.18(b): TEXTBOOK and EDITION Relations 110

Figure 4.1: Typical JAVA Environment 113

Figure 4.2: JDBC Two-Tier Model 134

Figure 4.3: JDBG Three-Tier Model 135

Figure 4.4: JDBC Driver Implementation 136

Figure 6.1: Semantic Object-Relational Table Transformation 155

Figure 6.2: POET Database Relationship Diagram 164

Figure 7.1: Data Types Available in Microsoft Access 166

Figure 7.2: Table Design View for Operation Relation 167

Figure 7.3: QBE Window for Previous Assignments Query 168

Figure 7.4: POET Application Program Architecture 169

Figure 7.5: Operation Input Form 171

Figure 7.6: Select Exercise Dialog Box for Operation Update Form 172

Figure 7.7: Operation Update Form 172

Figure 7.8: Training Table 173

Figure 7.9: Port Visit Report 175

Figure 7.10: Select Exercise Dialog Box 177

Figure 7.11: Exercise/Event Query 177

xvi

LIST OF TABLES

Table 4.1: SQL and Java Data Types and Recommended Conversion Methods 130

xvu

XVUl

ACKNOWLEDGEMENT / DEDICATIONS

One of the great pleasures of finishing up this thesis is acknowledging the support

of people whose names may not appear any where in the thesis, but whose cooperation,

friendship, understanding and patience were crucial for me to prepare this thesis and

successfully publish it.

I would like to extend my sincere gratitude to my thesis advisors, Professor C.

Thomas Wu and Prof. Lee Edwards, for assisting me in deciding a thesis topic that will

satisfy the requirements of both Computer Science and Systems Management

departments, helping me throughout the study and making it a beneficial experience.

Additionally, I would like to thank my wife, Sibel Can, for enduring the entire thesis

process.

Finally, I would like to dedicate this thesis to my daughter, Rana Deniz Can, who

is born during my thesis study.

xix

XX

I. INTRODUCTION

A. BACKGROUND

The Turkish Navy frigates, in their present state, lack the automated information

infrastructure required to efficiently perform their administrative tasks. This hinders the

ships' ability to generate the required reports rapidly and to make decisions effectively

based on this administrative information. The lack of an adequate information technology

system results in redundant and imprecise data maintained at different field sites and in

different file formats. This ultimately leads to a waste of computer resources, manpower

and time.

The management of the administrative activities is a difficult and time-consuming

job in terms of report and message preparation, maintenance of data at different sites, and

access to information. Furthermore, the large volume of daily, weekly, monthly, and

annual reports required either for submission to the higher command or for the ship's

internal use, makes the administrative tasks very difficult. In addition, the command

needs timely and accurate information in decision making.

In the current situation, it is a time consuming process to prepare the required

documents, because each department in the ship keeps its data in a different format and

environment and the information needed is not stored in a central database. There is

neither a standard format nor a software program to store, manipulate, and access the

data.

As a solution to the problems discussed in the previous paragraphs, a database

that will store information about Personnel, Operations, Equipment, and Training (POET)

and an application program that will provide the graphical user interface will be

developed for the Turkish Navy frigates. The POET database system will provide the

Turkish Navy ships with an automated information system to perform their primary

administrative functions. POET will support this mission by keeping track of all the

personnel, operations, equipment, and training records, maintaining them, producing

standard reports and providing the command with ad hoc information. This program is

expected to eliminate most of the current problems and to result in considerable savings

of personnel power and time while providing the required information to the command

quickly.

B. OBJECTIVE

The objective of this thesis is to design and implement the Personnel, Operations,

Equipment, and Training (POET) Database and Application Program for the Turkish

Navy frigates and to analyze the potential benefits that will be obtained by using this

system. The main goal of developing the POET database system is to support the

administrative activities, to release manpower to perform other duties and to reduce the

productive power loss by increasing the availability, accuracy, efficiency, and

consistency of the data needed to generate the documents and reports. The use of the

POET database system will greatly reduce the work hours spent on specific

administrative tasks and provide more time to maintain an efficient operational level.

The design of the database system takes the Turkish Navy frigates' functional

requirements into consideration. The primary function of the database system is to store

the personnel, operations, equipment, training and other relevant information in a central

database, to provide an easy-to-use graphical interface, to generate some standard reports

and ad hoc queries, and to help the administrative office personnel.

C. METHODOLOGY

There are different methodologies for developing systems. The process that will

be followed in this thesis captures the essence of most development methodologies. The

fundamental phases of the system development process are explained briefly in the

following subsections: Requirements Analysis; Conceptual Database Design; Logical

Database Design; Physical Database Design; Systems Analysis and Evaluation.

1. Requirements Analysis

The major task of the first step in database development process is collecting

information content and the processing requirements from all the identified and potential

users of the database. During this step, database users are interviewed to understand and

document the data requirements. In parallel with specifying the data requirements, it is

useful to specify the known functional requirements of the application. During the

requirements analysis phase, the tasks are to create the user's data model, determine the

functional components of the application, and use prototypes to help determine user

requirements.

2. Conceptual Database Design

Once all the requirements have been collected and analyzed, the next step is to

create a conceptual schema for the database, using a high-level conceptual data model,

such as Entity-Relationship Model or Semantic Data Model. The conceptual schema is a

concise description of the data requirements of the user and includes detailed descriptions

of the data types, relationships, and constraints; these are expressed using the concepts

provided by the high-level data model. Semantic Data Model will be used as the high-

level data model to represent the conceptual schema for the POET database.

3. Logical Database Design

The next step in the database design is the actual implementation of the database,

using a commercial DBMS. The major goal of the logical database design phase is to use

the results of the conceptual design phase and the processing requirements as input to

create a DBMS-processible schema as output. During this phase, the tasks are to develop

the database design and the application design. The database design consists of

structuring the relations, and establishing the relationships among them. The application

design deals with the design of the forms, reports, and tables as well as the specification

of update, display, and control mechanisms.

POET database system will be developed by using Microsoft Access database

management system.

4. Physical Database Design

During the physical database design phase, the internal storage structures and file

organizations for the database are specified. Physical database design is the process of

developing an efficient and implementable physical database structure from a given

logical database structure that has been shown to satisfy user information requirements.

In parallel with these activities, application programs are implemented as database

transactions corresponding to the high-level transaction specifications.

The application program will be implemented with Java programming language

and JDBC application programming interface.

5. System Analysis and Evaluation

Upon completion of the implementation, POET database system will be evaluated

and the possible benefits and advantages that would be gained by using the system will

be analyzed from manpower, management, and technical perspectives. In this phase,

systems implementation and support issues, such as conversion, training, testing, and

systems reliability and maintenance, are discussed.

D. ORGANIZATION OF THESIS

This thesis is organized into the following chapters:

• Chapter I: Introduction. This chapter gives an overview of the problem,

motivation, purpose and general outline of the thesis. It provides information

about the background, objective, and methodology of the study.

•

Chapter II: Background. This chapter is intended to provide an overview of

the concepts used throughout the thesis. An explanation of the Database

Systems, Relational Database Model, Structured Query Language,

Normalization, and Microsoft Access Database Management System will be

provided.

Chapter III: Semantic Data Model. This chapter describes the Semantic Data

Model, a high-level semantics-based data model that enables the semantics of

a database to be incorporated directly into its schema. The semantic object

types as well as the transformation of semantic objects into the relational

tables are explained in this chapter.

Chapter IV: Java and JDBC. Java and the JDBC package provide a concise

and efficient way to access and manipulate data stored in a Relational

Database Management System (RDBMS). The interaction between the user

interface and back-end data sources of the POET database system is based on

JDBC. This chapter will describe how to use Java and JDBC application

programming interface (API) to provide this type of interaction. It will

summarize the attributes of Java programming language and outline the JDBC

API, classes, methods, and how they can be used by applications to directly

access a RDBMS.

Chapter V: Requirements Analysis for POET Database. This chapter first

provides a general description of the database development process and

briefly explains the phases of the process. Then, data requirements for the

POET database system are explained by giving information about the

semantic objects that constitute the data model.

Chapter VI: Logical Database Design for POET Database. In this chapter, the

logical database design for POET database is described. Logical database

design phase covers the transformation of the semantic objects into the

relational model. The POET database tables and the relationships among them

are defined in Chapter VI.

Chapter VII: Implementation for POET Database and Application Program.

This chapter takes the reader through the database and application program

design for the POET system. It explains how the relational database tables are

implemented in Microsoft Access RDBMS and provides information about

the forms, reports, tables, and queries supported by the application program.

Chapter VIII: Systems Implementation and Support. This chapter will discuss

the systems implementation and support issues in general. Five aspects of

systems implementation and support; including system maintenance, quality

assurance, system reliability, training, and conversion will be described.

•

Chapter IX: Analysis of POET Database System. Chapter IX provides an

analysis and evaluation of the POET database system. First, a brief

introduction about the current situation of information processing in the

Turkish Navy frigates is given and the file-processing systems is compared

with the database processing systems. Then, it analyzes the benefits of the

system from managerial, manpower, and technical aspects. Finally, the system

implementation and installation issues are explained for the POET database

system.

Chapter X: Conclusions. This chapter provides a short summary of the thesis

and addresses possible future enhancements that might be made to the

developed system.

Appendices A through F supplement the chapters by providing complete

diagrams, specifications, and program code.

Appendix A: Semantic Objects

Appendix B: Domain Specifications

Appendix C: Relational Tables

Appendix D: Relationship Diagram

Appendix E: Application Program Screen Shots

Appendix F: Application Program Code

II. BACKGROUND

This chapter provides the background information necessary to understand the

thesis and the POET database application program. Hence, information will be presented

about database systems, relational database model, structured query language,

normalization, Microsoft Access, and systems implementation and support in the

following subsections.

A. DATABASE SYSTEMS

Databases and database technology are having a major impact on the growing use

of computers. Databases play a critical role in almost all areas where computers are used,

including business, engineering, medicine, law, education, and intelligence, to name a

few. The word database is in such common use that we must begin by defining what a

database is. A database is a collection of related data. By data, we mean known facts that

can be recorded and that have implicit meaning.

The preceding definition of database is quite general; for example, one may

consider the collection of words that make up this page of text to be related data and

hence to constitute a database. However, the common use of the term database is usually

more restricted. A database has the following implicit properties: [Ref. 1]

• A database represents some aspect of the real world, sometimes called the

mini world or the Universe of Discourse (UoD). Changes to the miniworld are

reflected in the database.

• A database is a logically coherent collection of data with some inherent

meaning. A random assortment of data cannot correctly be referred to as a

database.

• A database is designed, built, and populated with data for a specific purpose.

It has an intended group of users and some preconceived applications in which

these users are interested.

In other words, a database has a source from which data are derived, some degree

of interaction with events in the real world, and an audience that is actively interested in

the contents of the database. [Ref. 1]

A database management system (DBMS) is a collection of programs that enables

users to create and maintain a database. The DBMS is a general-purpose software system

that facilitates the processes of defining, constructing, and manipulating databases for

various applications. Defining a database involves specifying the data types, structures,

and constraints for the data to be stored in the database. Constructing the database is the

process of storing the data itself on some storage medium that is controlled by the

DBMS. Manipulating a database includes such functions as querying the database to

retrieve specific data, updating the database to reflect changes in the miniworld, and

generating reports from the data.

It is not necessary to use general-purpose DBMS software for implementing a

computerized database. The programmer could write his or her own set of programs to

10

create and maintain the database, in effect creating a special-purpose DBMS software, as

it is done in the implementation of the POET database application program. The database

and the software together are called a database system.

1. Benefits of the Database Approach

A number of characteristics distinguish the database approach from the traditional

approach of programming with files. In traditional file processing, each user defines and

implements the files needed for a specific application. This redundancy in defining and

storing data results in wasted storage space and in redundant efforts to maintain the data,

up-to-date.

In the database approach, a single repository of data is maintained that is defined

once and then is accessed by various users. The main properties of the database approach

versus the file processing approach are described as follows.

a. Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database

system contains not only the database itself, but also a complete definition or description

of the database. This definition is stored in the system catalog, which contains

information such as the structure of each file, the type and storage format of each data

item, and various constraints on the data. The information stored in the catalog is called

metadata, and it describes the structure of the primary database. [Ref. 1]

The catalog is used by the DBMS software and occasionally by database

users, who need information about the database structure.

11

The DBMS software is not written for any specific database application,

and hence it must refer to the catalog to know the structure, of the files in a specific

database, such as the type and format of data it will access.

In traditional file processing, data definition is typically part of the

application programs. Hence, these programs are constrained to work with only one

specific database, whose structure is declared in the application programs. Whereas file-

processing software can only access specific databases, DBMS software can access

diverse databases by extracting the database definitions from the catalog and then using

these definitions.

b. Data Abstraction

In traditional file processing, the structure of data files is embedded in the

access programs, so any changes to the structure of a file may require changing all

programs that access this file. By contrast, DBMS access programs are written

independently of any specific files. The structure of data files is stored in the DBMS

catalog separately from the access programs. This property is normally called program-

data independence.

Recent developments in object-oriented databases and programming

languages allow users to define operations on data as part of the database definitions. An

operation (also called a function) is specified in two parts. The interface (or signature) of

an operation includes the operation name and the data types of its arguments (or

parameters). The implementation (or method) of the operation is specified separately and

can be changed without affecting the interface. User application programs can operate on

12

the data by invoking these operations through their names and arguments, regardless of

how the operations are implemented. This may be termed program-operation

independence. [Ref. 1]

The characteristic that allows program-data independence and program-

operation independence is called data abstraction. A DBMS provides users with a

conceptual representation of data that does not include many of the details of how the

data is stored. Informally, a data model is a type of data abstraction that is used to provide

this conceptual representation. The data model uses logical concepts, such as objects,

their properties, and their interrelationships, that may be easier for most users to

understand than computer storage concepts. Hence, the data model hides storage details

that are not of interest to most database users.

c. Support of Multiple Views of the Data

A database typically has many users, each of whom may require a

different perspective or view of the database. A view may be a subset of the database or it

may contain virtual data that is derived from the database files, but not explicitly stored.

A multi-user DBMS whose users have a variety of applications provides facilities for

defining multiple views. [Ref. 1]

d. Sharing of Data and Multi-user Transaction Processing

A multi-user DBMS, as its name implies, must allow multiple users to

access the database at the same time. This is essential if data for multiple applications is

to be integrated and maintained in a single database. The DBMS must include

13

concurrency control software to ensure that several users trying to update the same data

do so in a controlled manner so that the result of the updates is correct. An example is

when several reservation clerks try to assign a seat on an airline flight; the DBMS should

ensure that each seat can be accessed by only one clerk at a time for passenger

assignment. These are generally called transaction-processing applications. A

fundamental role of multi-user DBMS software is to ensure that concurrent transactions

operate correctly without interference. [Ref. 1]

e. Controlling Redundancy

In traditional software development utilizing file processing, every user

group maintains its own files for handling its data-processing applications. Much of the

data is stored twice: once in the files of each user group. Additional user groups may

further duplicate some or all of the same data in their own files.

This redundancy in storing the same data multiple times leads to several

problems. First, there is the need to perform a single logical update ~ such as entering

data on a new tuple ~ multiple times. This leads to duplication of effort. Second, storage

space is wasted when the same data is stored repeatedly, and this problem may be serious

for large databases. Third, files that represent the same data may become inconsistent.

This may happen because an update is applied to some of the files, but not to others.

In the database approach, the views of different user groups are integrated

during database design. For consistency, we should have a database design that stores

each logical data item in only one place in the database. This does not permit any

inconsistency and it saves storage space. [Ref. 1]

14

/ Restricting Unauthorized Access

When multiple users share a database, it is likely that some users will not

be authorized to access all information in the database. For example, financial data is

often considered confidential, and hence only authorized persons are allowed to access

such data. In addition, some users may be permitted only to retrieve data, whereas others

are allowed both to retrieve and to input; i.e., updates. Hence, the type of access operation

- retrieval or update -- must also be controlled. Typically, users or user groups are given

account numbers protected by passwords, which they can use to gain access to the

database. A DBMS should provide a security and authorization subsystem, which the

database administrator (DBA) uses to create accounts and to specify account restrictions.

The DBMS should then enforce these restrictions automatically. [Ref. 1]

g. Persistent Storage for Program Objects and Data Structures

A recent application of databases is to provide persistent storage for

program objects and data structures. This is one of the main reasons for the emergence of

the object-oriented DBMS. Programming languages typically have complex data

structures, such as record types in PASCAL or class definitions in C++. The values of

program variables are discarded once a program terminates, unless the programmer

explicitly stores them in permanent files, which often involves converting these complex

structures into a format suitable for file storage. When the need again arises to read this

data, the programmer must convert from the file format to the program variable structure.

15

Object-oriented database systems are compatible with programming

languages such as C++ and Java, and the DBMS software automatically performs any

necessary conversions. Hence, a complex object in C++ can be stored permanently in an

object-oriented DBMS. Such an object is said to be persistent, since it survives the

termination of program execution and can later be directly retrieved by another C++

program. [Ref. 1]

h. Database Inferencing Using Deduction Rules

Another recent application of database systems is to provide capabilities

for defining deduction rules for inferencing new information from the stored database

facts. Such systems are called deductive database systems. For example, in education

there may be complex rules in the miniworld application for determining when a student

is on probation. These can be specified declaratively as deduction rules, which when

executed can determine all students on probation. In a traditional DBMS, an explicit

procedural program code would have to be written to support such applications. But if the

miniworld rules change, it is generally more convenient to change the declared deduction

rules than to recode procedural programs. [Ref. 1]

L Providing Multiple User Interfaces

Because many types of users, with varying levels of technical knowledge,

use a database, a DBMS should provide a variety of user interfaces. These include query

languages for casual users, programming language interfaces for application

programmers, forms and command codes for parametric users, and menu-driven

16

interfaces and natural language interfaces for stand-alone users. [Ref. 1]

j. Representing Complex Relationships Among Data

A database may include numerous varieties of data that are interrelated in

many ways. A DBMS must have the capability to represent a variety of complex

relationships among the data as well as to retrieve and update related data easily and

efficiently. [Ref. 1]

k. Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must

hold for the data. A DBMS should provide capabilities for defining and enforcing these

constraints. The simplest type of integrity constraint involves specifying a data type for

each data item. A more complex type of constraint that occurs frequently involves

specifying that a record in one file must be related to records in other files. Another type

of constraint specifies uniqueness on data item values. These constraints are derived from

the meaning or semantics of the data and of the miniworld it represents. It is the database

designers' responsibility to identify integrity constraints during database design. [Ref. 1]

I Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software

failures. The backup and recovery subsystem of the DBMS is responsible for recovery.

17

For example, if the computer system fails in the middle of a complex update program, the

recovery subsystem is responsible for making sure that the database is restored to the

state it was in before the program started executing.

Alternatively, the recovery subsystem could ensure that the program is

resumed from the point at which it was interrupted so that its full effect is recorded in the

database. [Ref. 1]

m. Potential for Enforcing Standards

The database approach permits the DBA to define and enforce standards

among database users in a large organization. This facilitates communication and

cooperation among various departments, projects, and users within the organization.

Standards can be defined for names and formats of data elements, display formats, report

structures, terminology, and so on. The DBA can enforce standards in a centralized

database environment more easily than in an environment where each user group has

control of its own files and software. [Ref. 1]

n. Reduced Application Development Time

A prime feature of the database approach is that developing a new

application takes very little time. Designing and implementing a new database from

scratch may take more time than writing a single specialized file application. However,

once a database is up and running, substantially less time is generally required to create

new applications using DBMS facilities. Development time using a DBMS is estimated

to be one-sixth to one-fourth ofthat for a traditional file system. [Ref. 1]

18

o. Flexibility

It may be necessary to change the structure of a database as requirements

change. For example, a new user group may emerge that needs additional information not

currently in the database. In response, we may need to add a new file to the database or to

extend the data elements in an existing file. Database systems allow such changes to the

structure of the database without affecting the stored data and the existing application

programs. [Ref. 1]

p. Availability of Up-to-Date Information

A DBMS makes the database available to all users. As soon as one user's

update is applied to the database, all other users can immediately see this update. This

availability of up-to-date information is essential for many transaction processing

applications, such as reservation systems or banking databases, and it is made possible by

the concurrency control and recovery subsystems of a DBMS. [Ref. 1]

q. Economies of Scale

The DBMS approach permits consolidation of data and applications, thus

reducing the amount of wasteful overlap between activities of data-processing personnel

in different projects or departments. This reduces overall costs of operation and

management.

19

2. Data Models, Schemas, and Instances

One fundamental characteristic of the database approach is that it provides some

level of data abstraction by hiding details of data storage that are not needed by most

database users. A data model is the main tool for providing this abstraction. A data model

is a set of concepts that can be used to describe the structure of a database. By structure

of a database, it is meant data types, relationships, and constraints are used to

configure/organize the data. Most data models also include a set of basic operations for

specifying retrievals and updates on the database. It is gradually becoming common

practice to include concepts in the data model to specify behavior; this refers to

specifying a set of valid user-defined operations that are allowed on the database in

addition to the basic operations provided by the data model.

a. Categories of Data Models

It is possible to categorize data models based on the types of concepts they

provide to describe the database structure. High-level or conceptual data models provide

concepts that are close to the way many users perceive data, whereas low-level or

physical data models provide concepts that describe the details of how data is stored in

the computer. Between these two extremes is a class of representational (or

implementation) data models, which provide concepts that may be understood by end

users but that are not too far removed from the way data is organized within the

computer. Representational data models hide some details of data storage, but can be

implemented on a computer system in a direct way.

20

High-level data models use concepts such as entities, attributes, and

relationships. An entity represents a real-world object or concept, such as an employee or

a project, which is stored in the database. An attribute represents some property of

interest that further describes an entity, such as the employee's name or salary. A

relationship among two or more entities represents an interaction among the entities; for

example, a works-on relationship between an employee and a project.

Representational or implementation data models are the ones used most

frequently in current commercial DBMSs, and they include the four most widely used

data models: Relational, network, hierarchical, and object-oriented. They represent data

by using record structures and hence are sometimes called record-based data models. We

can regard object-oriented data models as a new family of higher-level implementation

data models that are closer to conceptual data models.

Physical data models describe how data is stored in the computer by

representing information such as record formats, record orderings, and access paths. An

access path is a structure that makes the search for particular database records efficient.

[Ref. 1]

b. Schemas and Instances

In any data model it is important to distinguish between the description of

the database and the database itself. The description of a database is called the database

schema (or the metadata). A database schema is specified during database design and is

not expected to change frequently.

21

However, the actual data in a database may change frequently. The data in

the database at a particular moment in time is called a database state (or set of

occurrences or instances). The distinction between database schema and database state is

very important. When we define a new database, we only specify its database schema to

the DBMS. At this point, the corresponding database state is the "empty state" with no

data. The DBMS stores the schema in the DBMS catalog so that DBMS software can

refer to the schema whenever it needs to.

3. DBMS Architecture

Described in this section is the architecture for database systems, called the three-

schema architecture that is proposed to separate the user applications and the physical

database. In this architecture, Schemas can be defined at the following three levels:

internal; conceptual; and external schema. [Ref. 1]

a. Internal Schema

The internal level has an internal schema, which describes the physical

storage structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

b. Conceptual Schema

The conceptual level has a conceptual schema, which describes the

structure of the whole database for a community of users.

22

The conceptual schema hides the details of physical storage structures and concentrates

on describing entities, data types, relationships, user operations, and constraints. A high-

level data model or an implementation data model can be used at this level.

c. External Schema

The external level includes a number of external Schemas or user views.

Each external schema describes the part of the database that a particular user group is

interested in and hides the rest of the database from that user group. A high-level data

model or an implementation data model can be used at this level.

B. THE RELATIONAL DATABASE MODEL

Within the realm of database engineering, there are four basic types of database

models: Relational, Network, Hierarchical, and Object-Oriented database models. The

relational model represents the database as a collection of tables, where each table can be

stored as a separate file. The network model represents data as record types and also

represents a limited type of one-to-many relationship, called a set type. The network has

an associated record-at-a-time language that must be embedded in a host programming

language. The hierarchical model represents data as hierarchical tree structures. Each

hierarchy represents a number of related records. There is no standard language for the

hierarchical model, although most hierarchical DBMSs have record-at-a-time languages.

The object-oriented model defines a database in terms of objects, their properties, and

their operations. Objects with the same structure and behavior belong to a class, and

23

classes are organized into hierarchies. The operations of each class are specified in terms

of predefined procedures, called methods.

Most of the commercial database management systems implement the relational

database model, which is the most common model in use today. Therefore, the focus of

this section and the implementation of the POET database system will be the relational

database model.

The relational model was introduced by E.F. Codd in 1970 and it is based on a

simple and uniform data structure, called the relation, and has a solid theoretical

foundation. The relational model represents the database as a collection of relations.

Informally, each relation resembles a table or, to some extent, a simple file. [Ref. 1] For

example, the database of tables shown in Figure 2.1 is considered to be in the relational

model.

1. Relational Model Concepts

When a relation is thought of as a table of values, each row in the table represents

a collection of related data values. These values can be interpreted as facts describing a

real-world entity or relationship. The table name and column names are used to help in

interpreting the meaning of the values in each row of the table. An example is presented

here for explanation. The first table of Figure 2.1 is called STUDENT, because each row

represents facts about a particular student entity. The column names - StudentName,

StudentNumber, Class, Major - specify how to interpret the data values in each row,

based on the column each value is in. All values in a column are of the same data type.

24

STUDENT Relation

StudentName StudentNumber Class Major

Flowers 17 4 es

Dowler 25 3 es

Tidwell 36 4 EE

COURSE Relation

CourseName CourseNumber CreditHours Department

Database CS3320 4 CS

Networks IS3502 4 ITM

Computer Security CS3600 3 CS

Calculus MA3200 5 MATH

SECTION Relation

Section ID CourseNumber Quarter Instructor

85 CS3320 Summer 99 Wu

88 CS3320 Summer 99 Eagle

56 IS3502 Fall 99 Lundy

42 MA3200 Spring 99 Rasmussen

44 MA3200 Summer 99 Carlos

25

GRADE Relation

StudentNumber SectionID Grade

17 85 A

17 56 B

25 88 B

25 44 C

PREREQUISITE Relation

CourseNumber PrerequisiteNumber

CS3320 CS3300

IS3502 IS2502

CS3600 MA3200

MA3200 MA1100

Figure 2.1: University Database [Ref. 1]

In relational model terminology, a row is called a tuple, a column header is called

an attribute, and the table is called a relation. The data type describing the types of values

that can appear in each column is called a domain. The following subsections will define

these terms more precisely.

26

a. Domains, Tuples, Attributes, and Relations

A domain is a set of atomic values. By atomic, we mean that each value in

the domain is indivisible as far as the relational model is concerned. A common method

of specifying a domain is to specify a data type from which the data values forming the

domain are drawn. It is also useful to specify a name for the domain, to help in

interpreting its values.

• United States (USA) Phone Numbers: The set of 10-digit phone

numbers valid in the United States.

• Social Security Numbers: The set of valid 9-digit social security

numbers.

• Grade Point Averages: Possible mean values of computed grade point

averages; each must be a value between 0 and 4.

• Employee Ages: Possible ages of employees of a Company; each must

be a value between 16 and 80 years.

The preceding are logical definitions of domains. A data type or format is

also specified for each domain. For example, the data type for the domain US phone

numbers can be declared as a character string of the form (ddd) ddd-dddd, where each d

is a numeric (decimal) digit and the first three digits form a valid telephone area code. A

domain is thus given a name, data type, and format.

A relation schema R, denoted by R (Ai, A2,..., An), is made up of a

relation called R and a list of attributes Ai, A2, ..., An. A relation schema is used to

27

describe a relation; R is called the name of this relation. Each attribute A is the name of a

role played by some domain D in the relation schema R. P is called the domain of A and

is denoted by dorn (Aj). The degree of a relation is the number of attributes n of its

relation schema. [Ref. 1]

An example of a relation schema for a relation of degree 7, which

describes university students, is the following:

STUDENT (Name, SSN. HomePhone, Address, OfficePhone, Age, GPA)

Figure 2.2: STUDENT Relation

b. Characteristics of Relations

A relation is defined as a set of tuples. Mathematically, elements of a set

have no order among them; hence, tuples in a relation do not have any particular order.

Tuple ordering is not part of a relation definition, because a relation attempts to represent

facts at a logical or abstract level. When a relation is implemented as a file, a physical

ordering may be specified on the records of the file. [Ref. 1]

According to the preceding definition of a relation, an n-tuple is an

ordered list of n values, so the ordering of values in a tuple - and hence of attributes in a

relation schema definition - is important. However, at a logical level, the order of

attributes and their values are not really important as long as the correspondence between

attributes and values is maintained.

Another property of the relation is that there are no duplicate tuples in a

relation. This property follows from the fact that the body of the relation is a

28

mathematical set (i.e., a set of tuples), and sets in mathematics by definition do not

include duplicate elements. An important corollary of this fact is that there is always a

primary key. Since tuples are unique, it follows that at least the combination of all

attributes of the relation has the uniqueness property. [Ref. 2]

Each value in a tuple is an atomic value; that is, it is not divisible into

components within the framework of the relational model. Hence, composite and

multivalued attributes are not allowed in a relation. Multivalued attributes must be

represented by separate relations, and composite attributes are represented only by their

simple component attributes. [Ref. 1]

The values of some attributes within a particular tuple may be unknown or

may not apply to that tuple. A special value, called null, is used for these cases. In

general, we can have several types of null values, such as "value unknown", "attribute

does not apply to this tuple", or "this tuple has no value for this attribute".

As a summary, for a table to be a relation the following must hold: The

cells of the table must be single valued (atomic), and neither repeating groups nor arrays

are allowed as values. All entries in any column must be of the same kind. Each column

must have a unique name, but the order of the columns in the table is insignificant.

Finally, no two rows in a table may be identical, and the order of the rows is not

important. [Ref. 3]

29

c. Types of Relations

There are three types of relations that can exist in a relational system: Base

relations, views, snapshots, query results, intermediate results, and temporary relations.

[Ref. 2]

(1) Base Relations: A base relation corresponds to a table

whose tuples are physically stored in the database; that is, it is a named, autonomous

relation. In other words, base relations are those relations that are sufficiently important

that the database designer has decided that it is worth giving them a name and making

them a direct part of the database.

(2) Views: A view is a named, derived relation that is

represented within the system purely by its definition in terms of other named relations. It

does not have any separate, distinguishable stored data of its own (unlike a base relation).

(3) Snapshots: A snapshot is also a named, derived relation,

like a view. Unlike a view, however, a snapshot is real, not virtual. It is represented not

only by its definition in terms of other named relations, but also by its own stored data.

(4) Query Results: A query result is, as the name implies,

simply the final output relation resulting from some specified query. It may or may not be

named. Query results have no persistent existence within the database.

30

(5) Intermediate Results: An intermediate result is a relation

(typically unnamed) that results from some relational expression that is nested within a

larger expression.

(6) Temporary Relations: A temporary relation is a named

relation, like a base relation or view or snapshot, but unlike a base relation or view or

snapshot, it is automatically destroyed at some appropriate.

2. Relational Model Constraints

The various types of constraints that can be specified on a relational database

schema include domain constraints, key constraints, entity integrity, and referential

integrity constraints. Other types of constraints, called data dependencies (which include

functional dependencies and multivalued dependencies), are used mainly for database

design by normalization and will be discussed in Section D of this chapter.

a. Domain Constraints

Domain constraints specify that the value of each attribute "A" must be an

atomic value from the domain dom(A) for that attribute. The data types associated

with domains typically include standard numeric data types for integers (such as short-

integer, integer, long-integer) and real numbers (float and double-precision float).

Characters, fixed-length strings, and variable-length strings are also available, as are

date, time, timestamp, and money data types. Other possible domains may be

described by a subrange of values from a data type or as an enumerated data type

31

where all possible values are explicitly listed. [Ref. 1]

b. Key Constraints

A relation is defined as a set of tuples. By definition, all elements of a set

are distinct; hence, all tuples in a relation must also be distinct. This means that no two

tuples can have the same combination of values for all their attributes. Usually, there are

other subsets of attributes of a relation schema R with the property that no two tuples in

any relation instance r of R should have the same combination of values for these

attributes. Any such set of attributes is called a superkey of the relation schema R. Every

relation has at least one superkey - the set of all its attributes. A superkey can have

redundant attributes, however, so a more useful concept is that of a key, which has no

redundancy. Hence, a key is a minimal superkey; a superkey from which we cannot

remove any attributes and still have the uniqueness constraint hold.

For example, consider the STUDENT relation of Figure 2.2. The attribute

set {SSN} is a key of STUDENT, because no two-student tuples can have the same value

for SSN. Any set of attributes that includes SSN - for example {SSN, Name, Age} -- is a

superkey.

The value of a key attribute can be used to identify uniquely a tuple in the

relation. For example, the SSN identifies uniquely each tuple in the STUDENT relation.

Notice that a set of attributes constituting a key is a property of the relation schema; it is a

constraint that should hold on every relation instance of the schema. A key is determined

from the meaning of the attributes in the relation schema.

32

In general, a relation schema may have more than one key. In this case,

each of the keys is called a candidate key. It is common to designate one of the candidate

keys as the primary key of the relation. This is the candidate key whose values are used to

identify tuples in the relation.

c. Entity Integrity Constraint

The entity integrity constraint states that no primary key value can be null.

This is because the primary key value is used to identify individual tuples in a relation;

having null values for the primary key implies that we cannot identify some tuples. For

example, if two or more tuples had null for their SSN values in the STUDENT relation of

Figure 2.2, we might not be able to distinguish them.

d. Referential Integrity Constraint

Key constraints and entity integrity constraints are specified on individual

relations. The referential integrity constraint is specified between two relations and is

used to maintain the consistency among tuples of the two relations. Informally, the

referential integrity constraint states that a tuple in one relation that refers to another

relation must refer to an existing tuple in that relation. For example, in Figure 2.1, the

attribute StudentNumber of GRADE relation stores the student number for which the

grade is recorded; hence, its value in every GRADE tuple must match the StudentNumber

value of some tuple in the STUDENT relation.

To define referential integrity more formally, we must first define the

concept ofa foreign key. When the key of one relation is stored in a second relation, it is

33

called a foreign key. The attributes in the foreign key must have the same domain as the

primary key attributes and the foreign key is said to reference or refer to a second

relation.

Referential integrity constraints typically arise from the relationships

among the entities represented by the relation Schemas. Notice that a foreign key can

refer to its own relation. For example, the attribute SUPERSSN in EMPLOYEE relation

refers to the supervisor of an employee, which is another employee represented by a tuple

in the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that references the

EMPLOYEE relation itself.

3. Update Operations on Relations

There are three basic update operations on relations: insert, delete, and modify.

Insert is used to add a new tuple or tuples in a relation; delete is used to remove tuples;

and modify is used to change the values of some attributes. Whenever update operations

are applied, the integrity constraints specified on the relational database schema should

not be violated. [Ref. 1]

a. Insert Operation

The insert operation provides a list of attribute values for a new tuple that

is to be inserted into a relation. Insert can violate any of the four types of constraints

discussed in the previous section. Domain constraints can be violated if an attribute value

is given that does not appear in the corresponding domain. Key constraints can be

violated if a key value in the new tuple already exists in another tuple in the relation.

34

Entity integrity can be violated if the primary key of the new tuple is null. Referential

integrity can be violated if the value of any foreign key refers to a tuple that does not

exist in the referenced relation. [Ref. 1]

If an insertion violates one or more constraints, two options are available.

The first option is to reject the insertion. The second option is to attempt to correct the

reason for rejecting the insertion.

b. Delete Operation

This operation is used to remove the specified tuples from a relation. The

delete operation can violate only referential integrity, if the tuple being deleted is

referenced by the foreign keys from other tuples in the database. To specify deletion, a

condition on the attributes of the relation selects the tuple to be deleted. [Ref. 1]

Three options are available if a deletion operation causes a violation. The

first option is to reject the deletion The second option is to attempt to cascade (or

propagate) the deletion by deleting tuples that reference the tuple that is being deleted. A

third option is to modify the referencing attribute values that cause the violation; each

such value is either set to null or changed to reference another valid tuple.

c. Modify Operation

The modify operation is used to change the values of one or more

attributes in a tuple (or tuples) of a relation It is necessary to specify a condition on the

attributes of the relation to select the tuple (or tuples) to be modified. [Ref. 1]

35

Modifying an attribute that is neither a primary key nor a foreign key

usually causes no problems; the DBMS need only check to confirm that the new value is

of the correct data type and domain. Modifying a primary key value is similar to deleting

one tuple and inserting another in its place, because we use the primary key to identify

tuples.

4. Relational Algebra

The relational algebra is a collection of operations that are used to manipulate

entire relations. These operations are used to select tuples from individual relations and to

combine related tuples from several relations for the purpose of specifying a query on the

database. The result of each operation is a new relation, which can be further

manipulated. Relational algebra is closed, which means that the results of one or more

relational operations are always in a relational state.

The relational algebra operations are usually divided into two groups. One group

includes set operations from mathematical set theory; these are applicable because each

relation is defined to be a set of tuples. Set operations include UNION, INTERSECTION,

DIFFERENCE, and CARTESIAN PRODUCT. The other group consists of operations

developed specifically for relational databases; these include SELECT, PROJECT, and

JOIN.

a. Set Operations

Set theoretic operations apply to the relational model, because a relation is

defined to be a set of tuples and can be used to process the tuples in two relations as sets.

36

Several set theoretic operations are used to merge the elements of two sets in various

ways, including UNION, INTERSECTION, and DIFFERENCE. These operations are

binary; that is, they are applied to two sets. In order to apply any of these three operations

on the relational model, it is necessary that the relations have the same type of tuples; this

condition is called union compatibility.

Two relations are said to be union compatible if they have the same

number of attributes and that each pair of corresponding attributes have the same domain.

We can define the three operations UNION, INTERSECTION, and

DIFFERENCE on two union-compatible relations, "R" and "S", as follows:

(1) Union: The result of this operation is a relation that

includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are

eliminated.

(2) Intersection: The result of this operation is a relation that

includes all tuples that are in both R and S.

(3) Difference: The result of this operation is a relation that

includes all tuples that are in R but not in S.

(4) Cartesian Product: The result of this operation is a relation

that includes one tuple for each combination of tuples - one from R and one from S; that

37

is every tuple from R is combined with every tuple from S. The relations on which

CARTESIAN PRODUCT operation is applied do not have to be union compatible.

b. SELECT Operation

The SELECT operation is used to select a subset of the tuples in a relation

that satisfy a selection condition. In general, the SELECT operation is denoted by

«^selection condition (<relation name>)

The relation resulting from the SELECT operation has the same attributes

as the relation on which this operation is applied. The Boolean expression specified in the

selection condition is made up of a number of clauses of the form:

<attribute name> <comparison operator> <constant value>, or

<attribute name> <comparison operator> < attribute name >

where ottribute name> is the name of an attribute of <relation name>, <comparison

operator> is one of the operators =, <3 < >, >, * and <constant value> is a constant

value from the attribute domain. Clauses can be connected by the Boolean operators

AND, OR, and NOT to form a general condition.

The SELECT operator is unary; that is, it is applied on a single relation.

Hence, SELECT cannot be used to select tuples from more than one relation.

c. PROJECT Operation

If one might think of a relation as a table, the SELECT operation selects

some of the rows from the table while discarding other rows. The PROJECT operation,

on the other hand, selects certain columns from the table and discards the other columns.

38

If we are interested in only certain attributes of a relation, we use the PROJECT operation

to "project" the relation over these attributes. Projection can also be used to change the

order of attributes in a relation. The general form of a PROJECT operation is

rc<attribute iist> (<relation name>)

where ottribute list> is a list of attributes of the relation specified by <relation name>.

The resulting relation has only the attributes specified in <attribute list> and in the same

order as they appear in the list. The PROJECT operation implicitly removes any duplicate

tuples, so the result of the PROJECT operation is a set of tuples and a valid relation.

d. JOIN Operation

The JOIN operation, denoted by txi , is used to combine related tuples

from two relations into single tuples. This operation is very important for any relational

database with more than a single relation, because it allows us to process relationships

among relations. Essentially, JOIN operation is the same as a Cartesian Product followed

by a SELECT operation. The general form of a JOIN operation on two relations R and S

is

R M <]oin condition> S

The resulting relation has one tuple for each combination of tuples

whenever the combination satisfies the join condition. The most common JOIN involves

join conditions with equality comparisons only. Such a JOIN, where the only comparison

operator used is =, is called an Equijoin. In the result of an Equijoin, there are always one

or more pairs of attributes that have identical values in every tuple.

39

Because one of each pair of attributes with identical values is superfluous,

a new operation, called Natural Join, was created to get rid of the second attribute in an

equijoin condition.

C. STRUCTURED QUERY LANGUAGE (SQL)

SQL is a declarative database language designed for use with relational databases.

It has been endorsed by the American National Standards Institute (ANSI) as the

language for manipulating relational databases, and it is the data access language used by

many commercial DBMS products, including DB2, ORACLE, INGRES, SYBASE, SQL

Server, dBase, Microsoft Access, Paradox, and many others. Originally, SQL was called

Structured English Query Language (SEQUEL) and was designed and implemented at

IBM Research as the interface for an experimental relational database system.

SQL is a comprehensive database language; it has statements for data definition,

query, and update. Hence, it is both a Data Definition Language (DDL) and a Data

Manipulation Language (DML). In addition, it has facilities for defining views on the

database, for creating and dropping indexes on the files that represent relations, and for

embedding SQL statements into a general purpose programming language, such as C++,

Java or Pascal. [Ref. 1]

SQL consists of a set of standard commands that can be understood by all

compliant Relational Database Management Systems (RDBMS). The following is a list

of more commonly used SQL commands.

40

1. Data Definition in SQL

SQL uses the terms table, row, and column for relation, tuple, and attribute,

respectively. The SQL commands for data definition are CREATE, ALTER, and DROP.

These commands are used to create or modify tables and other database objects and are

explained in the following subsections.

a. CREATE TABLE Command

The CREATE TABLE command is used to specify a new relation by

giving it a name and specifying its attributes and constraints. The attributes are specified

first; and each attribute is given a name, a data type to specify its domain of values, and

possibly some constraints. The key, entity integrity, and referential integrity constraints

are the specified. [Ref. 1]

The following is the command used to define a table with the name

Department:

CREATE TABLE Department

(DepartmentName VARCHAR(IO) NOT NULL,

ManagerName CHAR (15) NOT NULL,

DepartmentNumber INT NOT NULL,

PRIMARY KEY (DepartmentNumber),

FOREIGN KEY (ManagerName) REFERENCES Employee (Name));

41

The data types that are available for attributes in SQL include numeric,

character string, bit string, date, and time. Numeric data types include integer numbers of

various sizes (INTEGER AND SMALLINT), and real numbers of various precisions

(FLOAT, REAL, DOUBLE). Formatted numbers can be declared by using DECIMAL

(i, j) or NUMERIC (ij), where "i" is the total number of decimal digits, and "j" is the

number of digits after the decimal point. Character string data types are either fixed-

length (CHAR (n), where n is the number of characters) or varying-length (VARCHAR

(n), where n is the maximum number of characters). Bit string data types are either of

fixed length n (BIT (n)) or varying-length (BIT VARYING (n), where n is the maximum

number of bits. [Ref. 1]

b. DROP TABLE Command

This command is used to delete a table definition and all rows in the table.

There are two drop behavior options: CASCADE and RESTRICT. For example, if we no

longer need to keep track of departments in our database, we can get rid of the

Department table by issuing the following command:

DROP TABLE Department CASCADE;

With the CASCADE option, all constraints and views that reference the

Department table are dropped automatically from the database schema, along with the

table itself. If the RESTRICT option is chosen instead of CASCADE, Department table is

deleted only if it is not referenced in any constraints (such as by foreign key definitions in

another relation) or views. [Ref. 1]

42

c. ALTER TABLE Command

The definition of a table can be changed by using the ALTER TABLE

command. It is possible to add or drop a column, change a column definition, or

add/remove constraints defined for the table. The following example shows the

command used to add another column to the Department table defined above.

ALTER TABLE Department ADD ManagerStartDate DATE;

To drop a column from a table, one must choose either CASCADE or

RESTRICT for drop behavior. For example, the following command removes the

attribute ManagerName from the Department table.

ALTER TABLE Department DROP ManagerName CASCADE;

2. Queries in SQL

SQL has one basic statement for retrieving information from a database: the

SELECT statement. This is the most commonly used SQL command and is used to query

the database and display selected data to the user. The SELECT statement is formed of

the three clauses SELECT, FROM, and WHERE and has the following form:

SELECT <attribute list>

FROM <table list>

WHERE <condition>

43

• <attribute list> is a list of attribute names whose values are to be retrieved by

the query.

• <table list> is a list of the relation names required to process the query.

• <condition> is a Boolean search expression that identifies the tuples to be

retrieved by the query. [Ref. 1]

The following query retrieves the names and numbers of the departments that are

managed by John Lewis.

SELECT DepartmentName, DepartmentNumber

FROM Department

WHERE ManagerName = 'John Lewis';

SQL provides five built-in functions COUNT, SUM, AVG, MAX, and MIN that

can be used in query statements. For example, the following query finds the sum of all

employees of the 'Research' department, as well as the maximum, minimum, and the

average salary in this department.

SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)

FROM Department, Employee

WHERE DepartmentName = 'John Lewis' AND DNO = DepartmentNumber;

44

It is also possible to apply built-in functions to groups of rows within a table. If

we want to apply the aggregate functions to subgroups of tuples in a relation, based on

some attribute values, we can use the GROUP BY clause for this purpose. The following

query retrieves the department name, the number of employees in the department, and

their average salary.

SELECT DepartmentName, COUNT (*), AVG (Salary)

FROM Employee

GROUP BY DepartmentName;

Finally, SQL allows the user to to order the tuples in the result of a query by the

values of one or more attributes, using the ORDER BY clause. For example, suppose one

wants to retrieve a list of employees but wants the list ordered by the employees'

departments and may want the names within each department ordered alphabetically.

SELECT DepartmentName, LastName, FirstName

FROM Employee, Department

WHERE DNO = DepartmentNumber

ORDER BY DepartmentName, LastName, FirstName;

45

3. Update Statements in SQL

In SQL, three commands can be used to modify the database: INSERT, DELETE,

and UPDATE.

a. INSERT Command

The INSERT command is used to add a new row to a table. The relation

name and a list of values for the tuple must be specified. It can be used to fill a new table

with data or add new data to an already existing table. When the user of the POET

database system performs an operation to input new data into the database, the request is

carried out by means of an INSERT command. The example below adds new department

to the table defined above.

INSERT INTO Department (DepartmentName, ManagerName, DepartmentNumber)

VALUES ("Research", "John Lewis", 32015);

A second form of the INSERT statement allows the user to specify explicit

attribute names that correspond to the values in the INSERT command. In this case,

attributes not specified in the INSERT statement are set to their DEFAULT values or

NULL, and the values are listed in the same order as the attributes are listed in the

INSERT command itself. [Ref. 1]

46

b. DELETE Command

The DELETE command removes tuples from a relation. It includes a

WHERE clause, similar to that used in SQL query, to select the rows to be deleted.

Depending on the number of tuples selected by the condition in the WHERE clause, zero,

one, or several tuples can be deleted by a single DELETE command. A missing WHERE

clause specifies that all rows in the table are to be deleted; however, the relation remains

in the database as an empty table. [Ref. 1] The following query can be used to delete the

department whose manager is "John Lewis".

DELETE FROM Department

WHERE ManagerName = "John Lewis";

c. UPDATE Command

This command is used to modify attribute values of one or more selected

tuples. As in the DELETE command, a WHERE clause in the UPDATE command

selects the rows to be modified from a single relation. An additional SET clause specifies

the attributes to be modified and their new values. UPDATE queries are used in the

POET to modify existing data in the back-end database. The following query can be

used, for example, to change the manager name of the department that has a Department

Number of 32014.

47

UPDATE Department

SET ManagerName = 'Adam Smith'

WHERE DepartmentNumber = 32014;

4. Views in SQL

A view in SQL is a single table that is derived from other base tables or

previously defined views. A view does not necessarily exist in physical form; it is

considered a virtual table, in contrast to base tables whose tuples are actually stored in the

database. This limits the possible update operations that can be applied to views, but it

does not provide any limitations on querying a view.

A view is a way of specifying a table that is needed to be referenced frequently,

even though it may not exist physically. For example, frequent issue queries that retrieve

the employee name and the project names that the employee works on. Rather than

having to specify the join of the EMPLOYEE, WORKS_ON, and PROJECT tables every

time that query is issued, a view can be defined that is a result of these joins and, hence,

already includes the attributes to be frequently retrieved.

CREATE VIEW EMPLOYEE_PROJECT

AS SELECT FirstName, LastName, ProjectName, Hours

FROM Employee, Project, Works_On

WHERE SSN = ESSN AND PNO = PNumber;

48

The view is specified by the CREATE VIEW command. The view is given a

virtual table name, a list of attribute names, and a query to specify the contents of the

view. If new attribute names are not specified for the view, as in the above example, then

the view inherits the names of the view attributes from the defining tables. [Ref. 1]

5. Processing SQL Statements

SQL statements can result in computationally expensive function calls; for

example, a complex join operation between two or more large tables. It is important that

system designers have a general understanding of how a database management system

processes an SQL statement. To process an SQL statement, a DBMS performs four basic

steps: Parse the SQL statement, Validate the statement, Generate an Access Plan, and

Execute the Plan. [Ref. 4]

a. Parse the SQL Statement

The DBMS first parses the SQL statement. It breaks the statement up into

individual words, called tokens, and makes sure that the statement has a valid verb and

valid clauses, and so on. Syntax errors and misspellings can be detected in this step.

Parsing a SQL statement does not require access to the database and typically can be

done very quickly. This phase ensures that the statement is syntactically correct. [Ref. 4]

49

b. Validate the SQL Statement

The second step in executing a query is validating the statement. The

DBMS checks the statement against the system catalog. The system catalog contains

database metadata, including table names, attributes and types. This phase ensures the

statement parameters are semantically correct. Do all the tables named in the SQL

statement exist in the database? Do all of the columns exist and are the column names

unambiguous? Does the user have the required privileges to execute the statement?

Certain semantic errors can be detected in this step. [Ref. 4]

c. Generate an Access Plan

The DBMS is responsible for managing the data stored in the database. In

this phase, based upon the statement, the DBMS generates an access plan. The access

plan is a binary representation of the steps that are required to execute the statement. The

DBMS optimizes the access plan. It explores various ways to carry out the access plan.

Can an index be used to speed a search? Should the DBMS first apply a search condition

to Table A and then join it to Table B, or should it begin with the join and use the search

condition afterward? Can a sequential search through a table be avoided or reduced to a

subset of the table? After exploring the alternatives, the DBMS chooses one of them.

Optimization is a very CPU-intensive process and requires access to the

system catalog. For a complex, multi-table query, the optimizer may explore thousands of

different ways of carrying out the same query. However, the cost of executing the query

inefficiently is usually so high that the time spent in optimization is regained in increased

query execution speed.

50

This is even more significant if the same optimized access plan can be reused to perform

repetitive queries. [Ref. 4]

d. Execute the Access Plan

In this step, the DBMS will execute the access plan, producing a result set

that can be passed to the user.

6. SQL Techniques

There are a variety of ways to use SQL to define and manipulate data in a

Database Management System. This section will briefly present embedded SQL, stored

procedures, and call level interface. The implementation details of the following are

usually specific to each DBMS. [Ref. 5]

a. Embedded SQL

One way is to embed SQL statements in a high-level programming

language. This is called Embedded SQL. Embedded SQL allows programmers to place

SQL statements into a host language, such as Java or C++. The SQL Statement can be

static or dynamic. Static SQL is effective if the data access can be determined at program

design time and is used when speed is important.

Each SQL statement starts with an introducer and ends with a terminator,

which serves as a flag. The code is processed by a SQL pre-compiler (provided by the

DBMS vendor), which separates the source code and the SQL request. The pre-compiler

substitutes calls to proprietary DBMS routines that provide the run-time link between the

51

program and the DBMS. The revised source code is then compiled and ultimately linked

with the proprietary DBMS library producing the executable. [Ref. 4]

The SQL requests that were extracted from the program form a database

request module, which is processed by a binding utility. This utility examines the SQL

statements, parses, validates, and optimizes them, and produces an access plan for each

statement. Because the SQL Statement is hard coded, this processing only needs to occur

at compile time, not at run time, resulting in faster run time query execution.

Dynamic SQL is effective when the data access cannot be determined in

advance, such as allowing a user to enter a SQL statement in which the results will be

displayed in a grid object. The application uses a flag, such as a question mark as a place

holder for parameters that will be supplied later. The SQL statement with the embedded

flags is then sent to the DBMS, via a PREPARE (string name) method. This allows the
i

DBMS to parse the string, and prepare an access plan. [Ref. 4]

When the user enters the input parameters in the client program the

application will call EXECUTE (string name), passing the DBMS the valid parameters.

The DBMS can then execute the query and provide the result set back to the user. This

technique is not as fast as Static Embedded SQL, because of the need to bind the input

parameters.

52

b. Stored Procedures

Another way to execute SQL statements is to have pre-defined and

compiled procedures, which reside on the database and can be called by clients. These

procedures are commonly referred to as stored procedures. A stored procedure is pre-

compiled SQL code that resides on the database server. Stored procedures take input

parameters and return a result. A number of procedures can be packaged to form an SQL

Module, which can be stored in the DBMS or linked to the application. A module

provides logical separation of SQL statements and the programming language/statements.

[Ref. 4]

Stored procedures are a form of query optimization. They are used for

efficiency, for SQL statements that are frequently executed and are computationally

expensive. The database administrator (DBA) creates and stores the procedures in the

DBMS. Once they are stored, those procedures can be invoked by a client. So, instead of

submitting a SQL statement, the client will simply invoke the stored procedure the DBA

has already defined. The database management system can develop, optimize and store

an access plan for executing the stored procedure, therefore decreasing response time

when the client invokes the procedure, because the access plan will not have to be

regenerated. Stored procedures can also reduce network congestion, by returning only the

result set of an operation rather than entire tables that the client may further process.

Triggers are another form of stored procedures. Triggers are special, user

defined actions in the form of a stored procedure, that are automatically invoked by the

server based upon data related events.

53

An example of a trigger might be the automatic generation of a parts order if the

inventory level of widgets falls below a certain level. [Ref. 4]

The problem with stored procedures is that they are vendor-specific,

totally non-standard, not portable across platforms, and have no standard interface

definition language or stub compiler. Therefore, there is no standard way to pass or

define parameters. [Ref. 5]

c. Call Level Interface

Another alternative to Embedded SQL is to use a callable SQL

Application Programming Interface (API) for database access, providing the application

with a library of DBMS functions that can be called by the application program. The

database aware application calls CLI functions on the local system, and the calls are sent

across the network and processed by the DBMS. The initial call may be to establish a

connection with the remote database. The application builds its SQL statements, places

the statement in a buffer then makes a call to send the statement to the DBMS for

processing. Then the application makes a CLI call to disconnect from the DBMS. [Ref. 4]

An API does not require a pre-compiler to convert SQL statements into a

high-level language, which can then be compiled and executed on the database. Instead,

an API allows the user to create and execute SQL statements at run time. A standard API

can be used to produce portable applications that are independent of any database

product. The SQL Access Group Call Level Interface (SAG CLI) specifies a common

API for accessing multiple databases. It provides common SQL semantics and syntax,

codifies the SQL data types, and provides common error handling and reporting.

54

The SAG API enables the client to connect to a database, execute requests, retrieve the

results and terminate the connection. Table 3.2 provides a comparison of the features of

CLI and Embedded SQL. [Ref. 5]

Microsoft's ODBC is a Windows API that is an extended version of the

SAG CLI. In addition to its basic functionality, it provides methods to retrieve

information about the database and handle multimedia types of data. ODBC offers the

ability to connect to multiple kinds of databases on different platforms. However, the

following are its drawbacks: [Ref. 5]

• It is procedure oriented and thus does not mold with most of the

application programs written in an object-oriented language.

• ODBC standards are controlled by one vendor and are subject to

change(s) at the vendor's wish.

• ODBC is difficult to learn and debug. It mixes simple and advanced

features together.

• ODBC driver manager and drivers must be installed on every client

machine. This means it might be a poor choice for a web-based

database system.

• ODBC has drawbacks in the security, robustness and portability of

applications.

55

Because of these drawbacks, and since Java is the natural language of

choice for an Internet based database system, JDBC was developed by Sun Microsystems

as a high-level API for invoking SQL commands directly on different vendor databases.

JDBC provides the security, robustness and portability that ODBC lacks. JDBC is a Java

API that enables large-scale applications to provide pure Java solutions. Java and JDBC

will be explained in Chapter IV.

D. NORMALIZATION

Relational database tables sometimes suffer from some rather serious problems in

terms of performance, integrity, and maintainability. For example, when the entire

database is defined as a single large table, it can result in a large amount of redundant

data and lengthy searches for just a small number of target rows. It can also result in long

and expensive updates and deletions in particular can result in the elimination of useful

data as an unwanted side effect.

If we had a method of breaking up such a large table into smaller tables so that

these types of problems would be eliminated, the database would be much more efficient

and reliable. Classes of relational database schemes or table definitions, called normal

forms, are commonly used to accomplish this goal. The creation of a normal form

database table is called normalization. It is accomplished by analyzing the

interdependencies among individual attributes associated with those tables and taking

projections (subsets of columns) of larger tables to form smaller ones. [Ref. 6]

56

Normalization of data can be looked on as a process during which unsatisfactory

relation Schemas are decomposed by breaking up their attributes into smaller relation

Schemas that possess desirable properties. The normalization process, as first proposed by

E. F. Codd in 1972, takes a relation schema through a series of tests to certify whether or

not it belongs to a certain normal form. [Ref. 1]

To understand the normalization, it is important to define three important terms,

functional dependency, key, and update anomaly.

1. Functional Dependencies

A functional dependency is a relationship between or among attributes. In a

situation given the value of one attribute, one can obtain the value of another attribute.

For example, if we know the value of Social Security Number, we can find the value of

the Employee Name. If this is true, it is surmised that EmployeeName is functionally

dependent on SocialSecurityNumber or SocialSecurityNumber functionally (or uniquely)

determines EmployeeName. [Ref. 3]

In more general terms, attribute Y is functionally dependent on attribute X, if the

value of X uniquely determines the value of Y. The functional dependency between X

and Y is denoted by the notation X "^ Y. The attributes on the left side of the arrow are

called determinants. [Ref. 1]

A functional dependency is a property of the meaning or semantics of the

attributes. We use our understanding of the semantics of the attributes of a relation, that is

57

how they relate to one another, to specify the functional dependencies that should hold on

all relation states. Consider the following EMPLOYEE-PROJECT relation schema:

EMPLOYEE-PROJECT (SSN, ProjectNo, Hours, EmployeeName, ProjectName,

ProjectLoaction)

From the semantics of the attributes, we know that the following functional dependencies

should hold:

(a) SSN "^ EmployeeName

(b) ProjectNo -> {ProjectName, ProjectLocation}

(c) {SSN, ProjectNo} -> Hours

These functional dependencies specify that (a) the value of an employee's social

security number (SSN) uniquely determines the employee's name (EmployeeName); (b)

the value of a project's number (ProjectNo) uniquely determines the project name

(ProjectName) and location (ProjectLocation); and (c) a combination of SSN and

ProjectNo values uniquely determines the number of hours the employee works on the

project per week (Hours).

58

2. Keys

A key is a group of one or more attributes that uniquely identifies each row in a

relation. A key is determined from the meaning of the attributes in the relation schema. A

set of attributes constituting a key is a property of the relation schema; it is a constraint

that should hold on every relation instance of the schema. Consider the following

ACTIVITY relation schema:

ACTIVITY (StudentID, Activity, Fee)

The meaning of a row is that a student engages in the named activity for the spec-

ified fee. Assume that a student is allowed to participate in only one activity at a time. In

this case, a value of StudentID determines a unique row, and so it is a key. [Ref. 3]

Keys can also be composed of a group of attributes taken together. For example,

if students were allowed to enroll in many activities at the same time, it would be

possible for one value of StudentID to appear in two or more rows of the table, so

StudentID could not uniquely identify the row. In this case, the combination of

(StudentID, Activity) can uniquely identify each row.

In general, a relation schema may have more than one key. In this case, each of

the keys is called a candidate key. It is common to designate one of the candidate keys as

the primary key of the relation. This is the candidate key whose values are used to

identify tuples in the relation. [Ref. 1]

59

3. Update Anomalies

A table that meets the minimum definition of a relation may not have an effective

or appropriate structure. For some relations, changing the data can have undesirable

consequences, called update anomalies. These can be classified into insertion anomalies,

and modification anomalies. Anomalies can be eliminated by redefining the relation into

two or more relations. [Ref. 3]

a. Insertion Anomalies

Consider the ACTIVITY relation that is shown in Figure 2.1.Suppose we

want to store the fact that scuba diving costs $175, but we can not enter this data into the

ACTIVITY relation until a student takes up scuba diving. This restriction is called an

insertion anomaly. A fact about one entity can not be inserted until we have an additional

fact about another entity.

StudentID Activity Fee

100 Skiing 200

150 Swimming 50

175 Squash 50

200 Swimming 50

Figure 2.3: Activity Relation [Ref. 3]

60

b. Deletion Anomalies

If the tuple is deleted for Student 100 from the ACTIVITY relation shown

in Figure 2.1, it might be lost that Student 100 is a skier, but also the fact that skiing costs

$200. This is called a deletion anomaly; that is, by deleting the facts about one entity, one

might inadvertently delete facts about another entity. With one deletion, facts about two

entities might be lost.

c. Modification Anomalies

In the ACTIVITY relation shown in Figure 2.1, if the value of fee attribute

of a particular activity is changed - for example, the fee for swimming is $75 - one must

update the tuples of all students who enroll in that activity; otherwise, the database will

become inconsistent. A failure to update some records, the same activity will be shown to

have different fees for different students, which should not be the case. [Ref. 1]

One can eliminate the insertion, deletion and the modification anomalies

by dividing the ACTIVITY relation into two relations, each one dealing with a different

theme. For example, the StudentID and Activity attributes can be put into one relation,

called STUDENT-ACTIVITY and the Activity and Fee attributes can be put into another

relation called ACTIVITY-COST. Now, if Student 100 is deleted from STUDENT-

ACTIVITY, the fact that skiing costs $200 is not lost. Furthermore, scuba diving can be

added and its fee to the ACTIVITY-COST relation before the student enrolls. Also, one

update in the ACTIVITY-COST relation will be sufficient to change the fee of the

swimming activity. Thus, the insertion, deletion and the modification anomalies have

been eliminated.

61

4. Normal Forms

Relations can be classified by the types of update anomalies to which they are

vulnerable. These classes of relations and the techniques for preventing anomalies are

called normal forms.

Initially, Codd proposed three normal forms in 1970, which he called first,

second, and third normal form. A stronger definition of 3NF was proposed later by Boyce

and Codd and is known as Boyce-Codd normal form (BCNF). Later, a fourth normal

form (4NF) and a fifth normal form (5NF) were proposed, based on the concepts of

multi-valued dependencies. [Ref. 1]

These normal forms are nested; that is, a relation in second normal form is also in

first normal form, and a relation in 5NF is also in 4NF, BCNF, 3NF, 2NF and INF. A

serious limitation of these normal forms was that no theory guaranteed that any of them

would eliminate all anomalies; each form could eliminate just certain ones. This changed,

however, in 1981 when R. Fagin defined a new normal form called domain/key normal

form (DK/NF). Fagin showed that a relation in domain/key normal form is free of all

modification anomalies, regardless of their type and that any relation that is free of

modification anomalies must be in domain/key normal form. [Ref. 3]

ä. First Normal Form (INF)

First normal form was defined to disallow multi-valued attributes,

composite attributes, and their combinations. It states that the domains of the attributes

must include only atomic (simple, indivisible) values and that the value of any attribute in

a tuple must be a single value from the domain of that attribute. Hence, INF does not

62

allow having a set of values, a tuple of values, or a combination of both as an attribute

value for a single tuple. The only attribute values permitted by INF are single atomic

values. [Ref. 1]

INF is now considered to be part of the formal definition of a relation.

Any table of data that meets the definition of a relation is said to be in first normal form.

For a table to be a relation, the following rules must hold: [Ref. 3]

• The cells of the table must be single valued, and neither repeating

groups nor arrays are allowed as values.

• All entries in any column (attribute) must be of the same kind.

• Each column must have a unique name, but the order of the columns in

the table is insignificant.

• No two rows in a table may be identical, and the order of the rows is

not important.

The advantages of INF over unnormalized tables are its representational

simplicity and the ease with which one can develop a query language for it. The

disadvantage is the requirement of duplicate data. [Ref. 6]

b. Second Normal Form (2NF)

Second normal form is based on the concept of full functional dependency.

A functional dependency X -> Y is a full functional dependency if removal of any

attribute from X means that the dependency does not hold any more. A functional

63

dependency X -> Y is a partial dependency if some attribute can be removed from X

and the dependency still holds. [Ref. 1]

EMPLOYEE-PROJECT (SSN, ProjectNo, Hours, EmployeeName, ProjectName,

ProjectLoaction)

In the above EMPLOYEE-PROJECT relation, {SSN, ProjectNo} -> Hours is a full

functional dependency, because neither SSN -> Hours nor ProjectNo-^ Hours holds.

However, the dependency {SSN, ProjectNo} _> EmployeeName is a partial

dependency, because EmployeeName is dependent on only SSN.

A table is in second normal form (2NF) if and only if it is in INF and every

non-key attribute is fully dependent on the primary key [Ref. 6]. According to this

definition, if a relation has a single attribute as its key, then it is automatically in second

normal form. Since the key is only one attribute, by default, every non-key attribute is

dependent on the primary key; there can be no partial dependencies. Thus, second normal

form is of concern only in relations that have composite keys.

If a relation schema is not in 2NF, it can be further normalized into a

number of 2NF relations in which non-key attributes are associated only with the part of

the primary key on which they are fully functionally dependent.

c. Third Normal Form (3NF)

The tables in 2NF represent a significant improvement over INF tables;

however, they still suffer from the anomalies, but for different reasons associated with

transitive dependencies. If a transitive dependency exists in a table, it means that two

64

separate facts are represented in that table, one fact for each functional dependency

involving a different left side. [Ref. 6] Consider the following HOUSING relation

schema:

HOUSING (StudentID, Building, Rent)

The primary key of this relation is StudentID, and the functional dependencies are

StudentID -> Building and Building -> Rent. These dependencies arise because each

student lives in only one building and each building charges only one rent. Since

StudentID determines Building and Building determines the value of Rent, then

StudentID indirectly determines the Rent. An arrangement of functional dependencies

like this is called a transitive dependency, since StudentID determines Rent through the

attribute Building.

To eliminate the anomalies from a relation in 2NF, the transitive

dependency must be removed, which leads to a definition of 3NF: A relation is in third

normal form if it is in second normal form and has no transitive dependencies. [Ref. 3]

Third normal form, which eliminates most of the anomalies known in

databases today, is the most common standard for normalization in commercial

databases. The few remaining anomalies can be eliminated by the Boyce-Codd normal

form and higher normal forms, which will be defined in the following subsections.

65

d. Boyce-Codd Normal Form (BCNF)

Boyce-Codd normal form is a stronger form of normalization than 3NF,

because it does not allow the right side of the functional dependency to be a candidate

key. Thus, every left side of a functional dependency in a table must be a candidate key.

[Ref. 6]

A relation is in Boyce-Codd normal form, if the determinants in each of

the functional dependencies are candidate keys. Relations in BCNF have no anomalies in

regard to functional dependencies.

e. Fourth Normal Form (4NF)

Fourth normal form is related with the concept of multivalued

dependency. Multivalued dependencies are a consequence of first normal form, which

disallowed an attribute in a tuple to have a set of values. If we have two or more

multivalued independent attributes in the same relation schema, we get into a problem of

having to repeat every value of one of the attributes with every value of the other attribute

to keep the relation instances consistent. This constraint is specified by a multivalued

dependency. In other words, whenever two independent one to many relationships are

mixed in the same relation, a multivalued dependency may arise. [Ref. 1]

In general, a multivalued dependency exists when a relation has at least

three attributes, two of them are multivalued and their values depend on only the third

attribute. For example, consider the following relation:

EMPLOYEE (EmployeeName, ProjectName, Dependent)

66

A tuple in this EMPLOYEE relation represents the fact that an employee

may work on several projects and may have several dependents, and the employees, proj-

ects and dependents are not directly related to one another. To keep the tuples in the

relation consistent, we must keep a tuple to represent every combination of an employee's

dependent and an employee's project.

The definition of 4NF, which is violated when a relation has undesirable

multivalued dependencies, and hence can be used to identify and decompose such rela-

tions. A relation schema is in 4NF, if it is in BCNF and has no multivalued dependency.

/ Fifth Normal Form (5NF)

Fifth normal form is based on the concept ofjoin dependency and lossless

decomposition. A table is in fifth normal form if it can not have a lossless decomposition

by the projection operation into any number of smaller tables. [Ref. 6]

A lossless decomposition of a table implies that it can be decomposed by

two or more projections, followed by a natural join of those projections (in any order)

that results in the original table, without any spurious or missing rows. The general

lossless decomposition constraint, involving any number of projections, is also known as

a loin dependency. In other words, a table is not in 5NF if it can be lossless

decomposed/joined via some projections. [Ref. 1]

If a table is already 4NF, with at least some of the functional dependencies

preserved, then the most appropriate decomposition to 5NF is by candidate key, with

each smaller table having the candidate key replicated and one non-key associated with

the candidate key. If there is only one candidate key - the composite of all attributes -

67

further decomposition is accomplished by trial and error using various (more than two)

subsets of the table's attributes.

Discovering join dependencies in practical databases with hundreds of

attributes is difficult; hence, current practice of database design pays scant attention to

them. [Ref. 1]

g. Domain-Key Normal Form (DKNF)

The idea behind domain-key normal form is to specify, (theoretically, at

least) the "ultimate normal form" that takes into account all possible types of

dependencies and constraints. A relation is said to be in DKNF if all constraints and

dependencies that should hold on the relation can be enforced simply by enforcing the

domain constraints and the key constraints specified on the relation. For a relation in

DKNF, it becomes very straightforward to enforce the constraints by simply checking

that each attribute value in a tuple is of the appropriate domain and that every key

constraint on the relation is enforced. However, it seems unlikely that complex con-

straints can be included in a DKNF table; hence, its practical utility is limited. [Ref. 1]

In 1981, R. Fagin showed that a relation in domain/key normal form has

no modification anomalies, and furthermore, that a relation having no modification

anomalies must be in domain-key normal form. This finding establishes a bound on the

definition of normal forms, and so no higher normal form is needed, at least in order to

eliminate modification anomalies. Equally important, DKNF involves only the concepts

of key and domain, concepts that are fundamental and close to the heart of database

practitioners. Informally, a relation is in DKNF if enforcing key and domain constraints

68

causes all of the constraints to be met. Moreover, since relations in DKNF can not have

modification anomalies, the DBMS can prohibit them by enforcing key and domain

restrictions. [Ref. 3]

5. Summary

Normalization is a process in which larger tables are decomposed to form smaller

ones in order to eliminate update anomalies. It is accomplished by analyzing the

interdependencies among individual attributes associated with those tables and taking

projections of larger tables to create smaller ones.

In some cases, normalization may not be desirable. Whenever a table is spilt into

two or more tables, referential integrity constraints are created. If the cost of the extra

processing of the two tables and their integrity constraint is greater than the benefit of

avoiding modification anomalies, then normalization is not recommended.

Database designers need not normalize the tables to the highest normal form.

Relations may be left in lower normal forms for performance reasons. In some cases,

creating repeating columns is preferred to the standard normalization techniques.

69

E. ACCESS 97

Microsoft Access is essentially a database management system. Like other

products in this category, Access stores and retrieves data, presents information, and

automates repetitive tasks. It is used to create, control, and manipulate one of the most

common forms of information system: a database. A database system is a collection of

integrated information that describes a particular object. Microsoft Access is a very

flexible program that can be used to manage simple database applications or to build

complex corporate management information systems.

Microsoft Access is well suited for both creating new database systems and for

expanding or upgrading current systems. Microsoft Access can accept data from a wide

variety of file formats, which makes it ideal for converting data stored in a different

system. There is complete interoperability between Access and Word, Excel, and

PowerPoint. Also, the program has an easy-to-master graphical interface, which makes it

an ideal tool for less experienced users. [Ref. 7]

Using Object Linking and Embedding (OLE) objects in Windows 95/98 and

Microsoft Office 97 products (Excel, Word, PowerPoint, and Outlook), one can extend

Access into being a true database operating environment through integration with these

products. With the new Internet extensions, it is possible to create forms that interact with

data directly from the World Wide Web and translate the forms directly into HTML that

works with products like Microsoft Internet Explorer and Netscape Navigator. [Ref. 8]

Even so, Access is more than just a database manager. As a relational database

management system, it gives the user access to all types of data and makes it possible to

use more than one database table at a time. One can link an Access table with mainframe

70

or server data or use a table created in Paradox or dBase. The user can take the results of

the link and combine the data with an Excel worksheet quickly and easily. [Ref. 8]

At the lowest level, Access gives the end user the capability of creating tables,

queries, forms, and reports easily. One can perform simple processing by using

expressions, also known as functions, to validate data, enforce a business rule, or display

a number with a currency symbol. Macros allow for automation without programming,

whereas VBA (Visual Basic for Applications) code lets the user program complex

processes. Finally, by using Windows API calls to functions or DLLs written in other

languages such as C++, Java, or even Visual Basic, a programmer can write interfaces to

other programs and data sources. [Ref. 8]

Access is a set of tools for end-user database management. Access has a table cre-

ator, a form designer, a query manager, and a report writer Access is also an environment

for developing applications. By using macros or modules to automate tasks, it is possible

to create user-oriented applications as powerful as those created with programming

languages - complete with the buttons, menus, and dialog boxes. [Ref. 8]

1. Features of Access 97

The following paragraphs will briefly describe some key features in Access 97:

True Relational Database Management; Ease-of-Use Wizards and Builders; Importing,

Exporting, and Linking External Files; Powerful Forms and Reports; Multiple-Table

Queries and Relationships; Business Graphs and Charts; DDE and OLE Capabilities;

Built-in Functions; and Context-Sensitive Help and Office Assistant.

71

a. True Relational Database Management

Access provides true relational database management. Access includes

definitions for primary and foreign keys and has full referential integrity built in at the

level of the database engine itself, which prevents inconsistent updates or deletions. In

addition, tables in Access have data-validation rules to prevent inaccurate data regardless

of how data is entered, and every field in a table has format and default definitions for

more productive data entry. Access supports all the necessary field types, including Text,

Number, AutoNumber (counter), Currency, Date/Time, Memo, Yes/No, Hyperlink, and

OLE objects. When values are missing in special processing, Access provides full

support for null values.

The relational processing in Access fills many needs with its flexible

architecture. It can be used as a stand-alone database management system, in a file-server

configuration, or as a front-end client to products such as an SQL server. In addition,

Access features ODBC (Open Database Connectivity) that makes it possible to connect to

many more external formats.

The program provides complete support for transaction processing,

ensuring the integrity of transactions. In addition, user level security provides control

over assigning user and group permissions to view and modify database objects. [Ref. 8]

b. Ease-of-Use Wizards and Builders

A Wizard can turn hours of work into minutes. Wizards ask the user

questions about content, style, and format; then they build the object for you

automatically. Access features nearly 100 Wizards to design databases, applications,

72

tables, forms, reports, graphs, mailing labels, controls, and properties. The user can even

customize Wizards for use in a variety of tasks. [Ref. 8]

In some areas, such as programming buttons on forms and reports, wizards

make the core so easy that even a fairly naive Access user can make applications that

work just like the ones done by experts. There is nothing one can do with a wizard that he

can not do manually, but using wizards can save a lot of time. [Ref. 7]

c. Importing, Exporting, and Linking External Files

Access lets the user import from or export to many common formats,

including dBase, FoxPro, Excel, SQL Server, Oracle, Btrieve, many ASCII text formats

(including fixed width and delimited), as well as data in HTML format. Importing creates

an Access table; exporting an Access table creates a file in the native file format that is

being exported to.

Linking (formally known as attaching) means that one can simply use

external data without creating an Access table. One can link to dBase, FoxPro, Excel,

ASCII, and SQL data. Linking to external tables and then relating them to other tables is

a powerful capability. [Ref. 8]

d. Powerful Forms and Reports

The Form and Report Design windows share a common interface and

power. The user can add labels, text data fields, option buttons, tab controls, check boxes,

lines, boxes, colors, shading ~ even pictures, graphs, subforms, or subreports — to the

forms and reports. As the user add each control, he can see the form take shape as he

73

builds the design. In addition, he has complete control over the style and presentation of

data in a form or report. In Access, forms can have multiple pages and reports can have

many levels of groupings and totals. The user can also view the report with sample data

when he is in design mode so that he does not waste valuable time waiting for a large

data file to be processed. [Ref. 8]

Most important, the Report Writer is very powerful, allowing up to ten

levels of aggregation and sorting. The Report Writer performs two passes on the data;

one can create reports that show the row percentage of a group total, which can be done

only by having a calculation based on a calculation that requires two passes through the

data.

e. Multiple-Table Queries and Relationships

One of the most powerful features in Access 97 is also the most important.

The relationship lets the user link his tables graphically. The user can even link tables of

different file types (such as an Access table and a dBase table); when linked, these tables

act as a single entity that he can query about his data. It is possible to select specific

fields, define sorting orders, create calculated expressions, and enter criteria to select

desired records. The user can display the results of a query in a datasheet, form, or report.

[Ref. 8]

Queries have other uses as well. One can create queries that calculate

totals, display cross-tabulations, and then make new tables from the results. The user can

even use a query to update data in tables, delete records, or append one table to another.

74

/ Business Graphs and Charts

Access 97 has the same graph application found in Microsoft Word,

Excel, PowerPoint, and Project. The user can create hundreds of types of business graphs

and customize the display to meet his every business need. He can create bar charts,

column charts, line charts, pie charts, and area charts in two and three dimensions.

It is possible to add free-form text, change the gridlines, adjust the color

and pattern in a bar, display data values on a bar or pie slice, and even rotate the viewing

angle of a chart from within then Access Graph program. In addition, the user can link his

graph with a form to get a powerful graphic data display that changes from record to

record in the table. [Ref. 8]

g. DDE and OLE Capabilities

Through the capabilities of Dynamic Data Exchange (DDE) and Object

Linking and Embedding (OLE), the user can add exciting new objects to his Access

forms and reports. Such objects may be sound, pictures, graphs, and even video clips. He

can easily embed OLE objects (such as a bitmap picture) or documents from word

processors (such as Word or WordPerfect) or link to a range of cells in an Excel

spreadsheet. By linking these objects to records in his tables, the user can create dynamic

database forms and reports and share information between Windows applications.

75

h. Accessing the Internet

Access 97 has features that allow the user to easily make his applications

Internet/intranet ready. It is very easy to save tables, queries, reports, and form datasheets

as HTML. The Publish to the Web Wizard allows even a neophyte to place the HTML

code generated from an object out on a Web site, ready for the perusal of all who surf the

Internet. The Publish to the Web Wizard walks you through the steps of creating the

HTML for selected database objects and of placing the generated HTML out on your

Web site. Hyperlinks allow others to access the published data as hypertext links, directly

from the Access forms. Using the Wizard, it is possible to create either static or dynamic

publications, publish them to the Web, create a home page, and even use templates to

obtain a standard look and feel for all HTML publications. [Ref. 8]

I Built-in Functions

Access contains more than 100 functions (small built-in programs that

return a value). These functions perform tasks in a wide variety of categories. Access

includes database, mathematics, business, financial, date, time, and string functions. The

user can use them to create calculated expressions in his forms, reports, and queries.

j. Context-Sensitive Help and Office Assistant

Access provides context-sensitive help; the user can press the Fl key

whenever he is stuck. Help information about the item he is working on appears instantly

Access also has an easy-to-use table of contents, a search facility, a history log, and

bookmarks.

76

The Office Assistant is Microsoft's attempt to incorporate artificial

intelligence into its help systems. Office Assistant responds in plain English when the

user asks for help. Screen Tips, also known as What is This, give short, on-screen

explanations of what something is. [Ref. 7]

2. Requirements for Access 97

Access 97 requires specific hardware and software to run. The following

subsections will describe the hardware and software requirements needed for Access 97.

a. Hardware Requirements

To use Access 97 successfully, one will need an IBM compatible personal

computer (PC) with an 80486SX-33 or higher processor and 12MB of RAM. To get

reasonable performance from Access 97, an 80486DX-66 computer with at least 16MB

of RAM is recommended. With more memory, the user will be able to run more

applications simultaneously, and overall performance will be increased. A fast video card

is also recommended to display pictures and graphs.

The user will also need between 60MB and 191MB of hard disk space for

a typical installation of Microsoft Office 97. If the user is installing only Access 97, he or

she will still need about 50MB, because many of the Office shared files are used by

Access and are loaded in the stand-alone version.

Access needs a VGA monitor as a minimum requirement, but an SVGA

(or better) display is recommended. This configuration allows the user to view more

information at one time and to get a sharper resolution.

77

A mouse or some other compatible pointing device (trackballs and pens

will work) is mandatory to be able to use Access 97. [Ref. 8]

b. Software Requirements

Access requires that Microsoft Windows 95/98 or Windows NT be

installed on the computer. Microsoft Office 97 does not run on OS/2 or Windows 3.1.

3. Database Objects and Views in Access 97

The Access database contains six objects; these consist of the data and tools one

needs to use Access:

• Table: Used to hold the actual data (uses a datasheet to display the raw

data)

• Query: Used to search, sort, and retrieve specific data

• Form: Used to enter and display data in a customized format

• Report: Used to display and print formatted data, including calculations

and totals

• Macro: Used to automate tasks without programming via easy-to-use

commands

• Module: Program written in VBA

78

The following subsections will explain each one of these database objects in detail.

a. Tables

A table is a container for raw data. When the user enters data in Access, a

table stores it in logical groupings of similar data. The table's design organizes the

information into rows and columns. A database contains one or more tables. Most

applications in Access have several related tables to present the information efficiently.

Multiple tables simplify data entry and reporting by decreasing the input

of redundant data. By defining two tables for an application that uses customer informa-

tion, for example, one does not need to store the customer's name and address every time

the customer purchases an item. By separating the data into multiple tables within the

database, the system is easier to maintain, because all records of a given type are within

the same table. [Ref. 8]

Datasheets are one of the many ways to view data. Although not a

database object, a datasheet displays a list of records from the table in a format

commonly known as a browse screen or table view. A datasheet displays data as a series

of rows and columns.

b. Queries

Queries are used to extract information from a database. A query can

select and define a group of records that fulfill a certain condition. One can use queries

before printing a report so that only the desired data is printed. Forms can also use a

query so that only certain records that meet the desired criteria will appear on-screen. The

79

user can use queries within procedures that change, add, or delete database records.

Access uses the method Query By Example (QBE), to execute the queries.

In this method, the user first selects the tables that will be used in the query. When the

user enters instructions into the QBE window, Access translates them into SQL

statements and retrieves the desired data by filtering the records, selecting only those

meeting the query criteria. Finally, the records appear on the screen in a datasheet.

These selected records are known as a dynaset - a dynamic set of data that

can change according to the raw data in the original tables. After running a query, the

user can use the resulting dynaset in a form, which displays the data in a specified format.

In this way, one can limit user access to only the data that meets the criteria in the

dynaset. [Ref. 8]

c. Forms

Forms help users get information into a database table in a quick, easy,

and accurate manner. Data entry and display forms provide a more structured view of the

data than does a datasheet. From this structured view, it is possible to view, add, change,

or delete database records. Entering data through the data entry forms is the most

common way to get the data into the database table.

Data entry forms can be used to restrict access to certain fields within the

table. One can also use these forms to check the validity of the data before one accepts it

into the database table.

80

Display-only screens and forms are solely for inquiry purposes. These

forms allow for the selective display of certain fields within a given table. Displaying

some fields and not others means that the database administrator can limit a user's access

to sensitive data while allowing inquiry into other fields. [Ref. 8]

d. Reports

Reports present the data in printed format. It is possible to create several

different types of reports within a database management system. This is accomplished by

incorporating a query into the report design. The query creates a dynaset consisting of the

records that satisfy the conditions.

Reports can combine multiple tables to present complex relationships

among different sets of data. An example is printing an invoice. You access the customer

table to obtain the customer's name and address and other pertinent data and the sales

table to print the individual line item information for the products ordered. You can then

have Access calculate the totals and print them in a specific format on the form. [Ref. 8]

e. Macros

A macro is a set of one or more actions that each performs a particular

operation, such as opening a form or printing a report. Macros can help the user to

automate common tasks. For example, one can run a macro that prints a report when a

user clicks a command button.

81

A macro can be one macro composed of a sequence of actions, or it can be

a macro group. You can also use a conditional expression to determine whether in some

cases an action will be carried out when a macro runs.

/ Modules

A module is a collection of Visual Basic for Applications declarations and

procedures that are stored together as a unit. There are two basic types of modules: class

modules and standard modules.

Form and report modules are class modules that are associated with a

particular form or report. Form and report modules often contain event procedures that

run in response to an event on the form or report. One can use event procedures to control

the behavior of forms and reports, and their response to user actions such as clicking the

mouse on a command button.

Standard modules contain general procedures that aren't associated with

any other object and frequently used procedures that can be run from anywhere within the

database.

82

III. SEMANTIC DATA MODEL

A. INTRODUCTION

The Semantic Database Model (SDM) is a high-level, semantics-based database

model that will enable the database designer to naturally and directly incorporate the

semantics of a database into its schema. This database model is designed to capture more

of the meaning of an application environment than is possible with other database

models. An SDM specification describes a database in terms of the kinds of entities that

exist in the application environment, the classifications and groupings of those entities,

and the structural interconnections among them. SDM provides a collection of high-level

modeling primitives to capture the semantics of an application environment. By

accommodating derived information in a database structural specification, SDM allows

the same information to be viewed in several ways; this makes it possible to directly

accommodate the variety of needs and processing requirements typically present in

database applications. [Ref. 9]

SDM is designed to enhance the effectiveness and usability of database systems.

SDM database description can serve as a formal specification and documentation tool for

a database; it can provide a basis for supporting a variety of powerful user interface

facilities; and, it can serve as a conceptual database model in the database design process.

SDM has been developed to satisfy a number of criteria that are not met by

contemporary database models, but which are essential in an effective database

description and design. [Ref. 9]

83

(1) The constructs of the database model should provide for the explicit

specification of a large portion of the meaning of a database. Other data models employ

overly simple data structures to model an application environment. In so doing, they

inevitably lose information about the database; they provide for the expression of only a

limited range of a designer's knowledge of the application environment. However, it is

essential that the database model provide a rich set of features to allow the direct

modeling of application environment semantics.

(2) A database model must support a relativist view of the meaning of a

database, and allow the structure of a database to support alternative ways of looking at

the same information. In order to accommodate multiple views of the same data and to

enable the evolution of new perspectives on the data, a database model must support

schemata that are flexible, logically redundant, and integrated. Flexibility is essential in

order to allow for multiple and coequal views of the data. In a logically redundant

database schema, the values of some database components can be algorithmically derived

from others. Finally, an integrated schema explicitly describes the relationships and

similarities between multiple ways of viewing the same information.

(3) A database model must support the definition of schemata that are based

on abstract entities. Specifically, this means that a database model must facilitate the

description of relevant entities in the application environment, collections of such

entities, relationships (associations) among entities, and structural interconnections

among the collections. Moreover, the entities themselves must be distinguished from

84

their syntactic identifiers (names); the user-level view of a database should be based on

actual entities rather than on artificial entity names.

B. SEMANTIC OBJECTS

A semantic object can be defined as a representation of some identifiable thing in

the real world. More formally, a semantic object is a named collection of attributes that

sufficiently describes a distinct identity. Semantic objects are grouped into classes. An

object class has a name that distinguishes it from other classes and that corresponds to the

names of the things it represents. [Ref. 3] Thus, a database that supports users who work

with student records, has an object class called STUDENT. A particular semantic object

is an instance of the class. Thus, 'Yuksel Can' is an instance of the STUDENT class.

Like entities, a semantic object has a collection of attributes. Each attribute

represents a characteristic of the identity being represented. For instance, the STUDENT

object could have attributes like Name; HomeAddress; CampusAddress; DateOfBirth;

and Major.

Objects represent distinct identities; that is, they are something that users rec-

ognize as independent and separate and that users want to track and report. These

identities are the nouns about which the information is to be produced. The identities that

the objects represent may or may not have a physical existence. For example, STUDENT

object represents identities that physically exist, but COURSE does not.

85

1. Attributes

Semantic objects have attributes that define their characteristics. There are three

types of attributes: Simple attributes, Group attributes, and Semantic object attributes.

a. Simple Attributes

Simple attributes have a single value. Examples are DateOfBirth,

InvoiceNumber, and CourseName.

b. Group Attributes

Group attributes are composites of other attributes. One example is

Address, which contains the attributes {Street, City, State, Zip}; another example is

FullName, which contains the attributes {FirstName, Middlelnitial, LastName}.

c. Semantic Object Attributes

Semantic object attributes are attributes that establish a relationship

between one semantic object and another.

Attributes may be either single-valued or multi-valued. A single-valued

attribute is an attribute whose maximum cardinality is 1. A multi-valued attribute is one

whose maximum cardinality is greater than 1.

Semantic objects are shown in semantic object diagrams, which are

portrait-oriented rectangles, in which the name of the object appears at the top and the

attributes are written in order after the object name. Figure 3.1 shows an example of a

semantic object diagram.

86

SALES-ORDER

JD SalesOrderNumber 1.1

Date LI

CUSTOMER

SALESPERSON

1.1

1.1

Lineltem

ID ITEM
1.1

Quantity 1.1

ExtendedPrice 1.1
O.N

Subtotal 1.1

Tax 0.1

Total 1.1

Figure 3.1 Semantic Object Diagram

The SALES-ORDER object contains an example of each of the three types of

attributes: SalesOrderNumber, Date, Subtotal, Tax, and Total are all simple attributes,

each of which represents a single data element. Lineltem is a group attribute containing

the simple attributes Quantity and ExtendedPrice, and the semantic object attribute:

ITEM. CUSTOMER, SALESPERSON, and ITEM each are semantic object attributes,

which means that these objects are related to and logically contained in SALES-ORDER.

87

2. Attribute Cardinality

Each attribute in a semantic object has both a minimum cardinality and a

maximum cardinality. The minimum cardinality indicates the number of instances of the

attribute that must exist in order for the object to be valid. Usually this number is either

"0" or "1". If it is 0, the attribute is not required to have a value. If it is 1, the attribute

must have a value. The maximum cardinality indicates the maximum number of instances

of the attribute that the object may have. It is usually either 1 or N. If it is 1, the attribute

can have no more than one instance; if it is N, the attribute can have many values.

[Ref. 3]

Cardinalities are shown as subscripts of attributes in the format n.m, where n is

the minimum cardinality and m is the maximum. In Figure 3.1, the minimum cardinality

of SalesOrderNumber is 1 and the maximum is also 1, which means that exactly one

value of SalesOrderNumber is required. The cardinality of 0.1 in Tax means that a

SALES-ORDER may have either zero or one Tax.

The cardinalities of group attributes and the attributes inside groups can be

interpreted as follows: The cardinality of Lineltem group attribute is 0.N, meaning that a

SALES-ORDER may have zero or more line items. However, each attribute within this

group has a cardinality of 1.1, meaning that these attributes are required. One might

wonder how a group could- be optional if the attributes in that group are required. The

answer is that the cardinalities operate only between the attribute and the container ofthat

attribute. Thus, a Lineltem group need not appear in a SALES-ORDER, but if it does,

then it must have a value for Item, Quantity, and ExtendedPrice attributes.

88

3. Paired Attributes

The semantic object model has no one-way relationships. If ah object contains

another object, the second object will contain the first one. For example, if SALES-

ORDER contains the object attribute SALESPERSON, then SALESPERSON will

contain the matching object attribute SALES-ORDER. The object attributes always occur

as a pair, because if Object A has a relationship with Object B, then Object B will have a

relationship with Object A. [Ref. 3]

4. Object Identifiers

An object identifier is one or more object attributes that the users employ to

identify object instances. In SALES-ORDER semantic object, for example, the object

identifier is SalesOrderNumber, an attribute that uniquely identifies each Sales-Order

instance. A group identifier is an identifier that has more than one attribute. Examples are

{FirstName, LastName}, {Firstname, PhoneNumber}, and {State, LicenseNumber}.

Object identifiers may or may not be unique, depending on the type of the data.

For example, SalesOrderNumber is a unique identifier for SALES-ORDER, but

StudentName is not a unique identifier for STUDENT, because there may be two

students named 'Mary Smith'.

In semantic object diagrams, object identifiers are denoted by the letters ID in

front of the attribute. If the identifier is unique, these letters will be underlined. In Figure

3.1, for example, the attribute SalesOrderNumber is a unique identifier of SALES-

ORDER object class.

89

5. Attribute Domains

The domain of an attribute is a description of an attribute's possible values. The

characteristics of a domain depend on the type of the attribute. The domain of a simple

attribute consists of both a physical and a semantic description. The physical description

indicates the type of data (for example, numeric versus string), the length of the data, and

other restrictions or constraints (such as the value must not exceed 100). The semantic

description indicates the function or purpose of the attribute-it distinguishes this attribute

from other attributes that might have the same physical description. [Ref. 3]

The domain of a group attribute also has a physical and a semantic description.

The physical description is a list of all of the attributes in the group and the order of those

attributes. The semantic description is the function or purpose of the group.

The domain of an object attribute is the set of object instances of that type. In

Figure 3.1, for example, the domain of the CUSTOMER object attribute is the set of all

CUSTOMER object instances in the database.

C. TYPES OF SEMANTIC OBJECTS

This section describes and illustrates seven types of semantic objects. [Ref. 3]

1. Simple Objects

A simple object is a semantic object that contains only single-valued, non-object

attributes. [Ref. 3] Figure 3.2 shows a simple object, EQUIPMENT, that models

Equipment Tag. None of the attributes of this object is multi-valued, and none is an

object attribute.

90

EQUIPMENT

jo EquipmentNumber 1.1

Description 0.1

AcquisitionDate 0.1

PurchaseCost 0.1

Figure 3.2: EQUIPMENT Simple Object

2. Composite Objects

A composite object is a semantic object that contains one or more multi-valued,

non-object attributes. [Ref. 3] The HOTEL-BILL object, shown in Figure 3.3, is a

composite object that contains a multi-valued group attribute, Lineltem.

HOTEL-BILL

10 InvoiceNumber 1.1

ArrivalDate 1.1

CustomerName n

Lineltem

ID ServiceDate \A

ServiceDescription 1.1

Price 1.1
0 N

TotalDue 1.1

Figure 3.3: HOTEL-BILL Composite Object

91

3. Compound Objects

A compound object is a semantic object that contains at least one object attribute.

The relationship between two compound objects can be one to one (1:1), one to many

(1:N), or many to many (M:N). [Ref. 3] An illustration of compound objects that have a

M:N relationship appears in Figure 3.4. From these object diagrams, we can deduce that

one book can be written by many authors and that one author can write many books,

because BOOK object contains many values of AUTHOR, and AUTHOR contains many

values of BOOK. Hence the relationship from BOOK to AUTHOR is many to many or

N:M. Furthermore, a BOOK must have an AUTHOR, and an AUTHOR (to be an author)

must have written at least one BOOK. Therefore, both of these objects have a minimum

cardinality of one.

BOOK

ID ISBN iA

Title 1.1

Publisher o.i

CopyrightDate 0.1

AUTHOR
1.N

AUTHOR

jD SSN1.1

AuthorNamei.i

Address 0.1

Phone 0.1

BOOK
1.N

Figure 3.4: BOOK and AUTHOR Compound Objects

4. Hybrid Objects

Hybrid objects are combinations of compound and composite objects. In

particular, a hybrid object is a semantic object with at least one multi-valued group

92

attribute that includes a semantic object attribute. Figure 3.5 is an object diagram that

models a hybrid object. SALES-ORDER contains a multi-valued group attribute,

Lineltem, with both the object attribute ITEM and the non-object attributes Quantity and

ExtendedPrice. This means that Quantity and ExtendedPrice are paired with ITEM in the

context of SALES-ORDER.

SALES-ORDER

IB SalesOrderNumber 1.1

Date 1.1

CUSTOMER

SALESPERSON

1.1

1.1

Lineltem

ID ITEM
1.1

Quantity n

ExtendedPrice 1.1
O.N

Subtotal 1.1

Tax o.i

Total 1.1

Figure 3.5: SALES-ORDER Hybrid Object

5. Association Objects

An association object is an object that relates two or more objects and stores data

that are peculiar to that relationship. [Ref. 3] In Figure 3.6, the object FLIGHT is an

93

association object that associates the two objects AIRPLANE and PILOT and stores data

about their association. FLIGHT contains one each of AIRPLANE and PILOT; but both

AIRPLANE and PILOT contain multiple values of FLIGHT. This particular pattern of

associating two or more objects with data about the association occurs frequently in

applications that involve the assignment of two or more things.

AIRPLANE

10 TailNumber-i.1

Manufacturer LI

Type 0.1

PassengerCapacity 0.1

FreightCapacity 0.1

FLIGHT
0.N

PILOT

ID SocialSecurityNumber-u

Name n

Address 0.1

PhoneNumber 0.1

FlightHours 0.1

FLIGHT
0.N

FLIGHT

ID FlightNumber 1.1

Date 1.1

OriginatingCity 0.1

DestinationCity 0.1

AIRPLANE

PILOT

1.1

1.1

Figure 3.6: FLIGHT, AIRPLANE, and PILOT Semantic Objects

94

6. Parent/Subtype Objects

Parent/Subtype Objects model generalization, inheritance and is-a relationships.

[Ref. 3] An example is shown in Figure 3.7, in which the EMPLOYEE object contains a

subtype object, MANAGER. EMPLOYEE object has the common attributes of all

employees, while MANAGER object having manager-oriented attributes. In this

example, the EMPLOYEE object is called a parent object or supertype object, and the

MANAGER object is called a subtype object.

The first attribute of a subtype object is the parent object attribute and is denoted

by the subscript P. Parent attributes are always required in subtype objets. The identifiers

of the subtype are the same as the identifiers of the parent.

Subtype attributes are shown with the subscript O.ST or l.ST. The first digit is the

minimum cardinality of the subtype. If it is 0, the subtype is optional, and if it is 1, the

subtype is required. The ST indicates that the attribute is a subtype, or IS-A attribute.

EMPLOYEE

ID SocialSecurityNumber <\A

EmployeeName 1.1

HireDate 0.1

Salary 0.1

MANAGER
O.ST

MANAGER

EMPLOYEE

ManagerTitlei.i

ManagementLevel <[.\

StartDate 0.1

Office o.i

Figure 3.7: EMPLOYEE Supertype and MANAGER Subtype Objects

95

Parent/subtype objects have an important characteristic, called inheritance. A

subtype acquires, or inherits all of the attributes of its parent, and therefore a MANAGER

inherits all of the attributes of an EMPLOYEE.

A semantic object may contain more than one subtype attribute. In this case, the

parent object contains each subtype as an attribute. If the subtypes exclude one another,

they are placed into a subtype group, and the group is assigned a subscript of the format

X.Y.Z. X is the minimum cardinality and is 0 or 1, depending on whether or not the

subtype group is required. Y and Z are counts of the number of attributes in the group

that are allowed to have a value. Y is the minimum number required, and Z is the

maximum number allowed. [Ref. 3]

Figure 3.8 shows three types of CLIENT as a subtype group. The subscript of the

group, 0.1.1, means that the subtype is not required, but if it exists, a minimum of one

and a maximum of one (or exactly one) of the subtypes in the group must exist.

ID

CLIENT

ClientNumberi.i

ClientName <\A

PhoneNumber o.i

0.1.1

O.ST

O.ST

O.ST

INDIVIDUAL

PARTNERSHIP

CORPORATION

Figure 3.8: Exclusive Subtypes

96

Each of the subtypes has the subscript O.ST, meaning that they all are optional.

This notation is robust enough to allow fur situations in which three out of five or seven

out often of a list of subtypes must be required.

7. Archetype/Version Objects

An archetype object is a semantic object, which produces other semantic objects

that represent versions, releases, or editions of the archetype. [Ref. 3] For example, in

Figure 3.9, the archetype object TEXTBOOK produces the version object EDITION.

According to this model, the attributes Title, Author, and Publisher belong to the object

TEXTBOOK, and the attributes EditionNumber, Publication Date, and NumberOfPages

belong to the EDITION of the TEXTBOOK.

The ID group in EDITION has two portions, TEXTBOOK and EditionNumher;

this is the typical pattern for an ID of a version object. One part of the ID contains the

archetype object, and the second part is a simple attribute that identifies the version

within the archetype.

TEXTBOOK

IB ISBN 1.1

Title 1.1

Author 1.1

Publisher 0.1

EDITION 1.N

EDITION

ID Edition ID

TEXTBOOK
1.1

EditionNumber 1.1

PublicationDate 1.1

NumberOfPages 0.1

1.1

Figure 3.9: TEXTBOOK Archetype and EDITION Version Objects

97

D. TRANSFORMATION OF SEMANTIC OBJECTS INTO
RELATIONS

This section discusses the transformation of semantic object models into relational

database designs by describing the transformation of each semantic object type.

1. Transformation of Simple Objects

Recall that a simple object has no multi-valued attributes and no object attributes.

Consequently, a simple object can be represented by a single relation in the database.

Figure 3.10 (a) is an example of a simple object, EQUIPMENT, which can be rep-

resented by a single relation, as shown in Figure 3.10 (b). Each attribute of the object is

defined as an attribute of the relation, and the identifying attribute, EquipmentNumber,

becomes the primary key of the relation, denoted by underlining and making

EquipmentNumber boldface.

EQUIPMENT

ID EquipmentNumber n

Description 0.1

AcquisitionDate 0.1

PurchaseCost 0.1

Figure 3.10 (a): EQUIPMENT Simple Object

EQUIPMENT (EquipmentNumber. Description, AcquisitionDate, PurchaseCost)

Figure 3.10 (b): EQUIPMET Relation

98

In general, simple objects are transformed into relations by creating a relation for

each simple object.

2. Transformation of Composite Objects

A composite object is an object that has one or more multi-valued simple or group

attributes but no object attributes. Figure 3.11 (a) shows an example composite object,

HOTEL-BILL. To represent this object, one relation is created for the base object,

HOTEL-BILL, and an additional relation is created for the repeating group attribute,

Lineltem. This relational design is shown in Figure 3.11 (b). In the key of LINEITEM,

InvoiceNumber is underlined because it is part of the key, and it is italicized because it is

also a foreign key.

HOTEL-BILL

ID InvoiceNumber 1.1

ArrivalDate 1.1

CustomerName 1.1

Lineltem

ID ServiceDate 1.1

ServiceDescription 1.1

Price 1.1
O.N

Total Due 1.1

Figure 3.11 (a): HOTEL-BILL Composite Object

99

HOTEL-BILL (InvoiceNumber. ArrivalDate, CustomerName, TotalDue)

LINEITEM (InvoiceNumber. ServiceDate. ServiceDescription, Price)

Figure 3.11 (b): HOTEL-BILL and LINEITEM Relations

In general, composite objects are transformed by defining one relation for the

object itself and another relation for each multi-valued attribute. The key of the tables

constructed for the multi-valued attributes is the composite of the identifier of the object

plus the identifier of the group.

3. Transformation of Compound Objects

A compound object, OBJECT1, can contain one or many instances of a second

object, OBJECT2, and OBJECT2 can contain one or many instances of the first object,

OBJECT1. This leads to three types of relationships between compound objects: one to

one (1:1), one to many (1 :N), and many to many (M:N).

a. Representing 1:1 Compound Objects

Figure 3.12 (a) shows the object diagrams for one to one compound

objects MEMBER and LOCKER. To represent these objects with relations, a relation for

each object is defined, and a key of either relation is placed in the other relation. That is,

one can place the key of MEMBER in LOCKER or the key of LOCKER in MEMBER.

Figure 3.12 (b) shows the placement of the key of LOCKER in MEMBER. Note that

LockerNumber is underlined in LOCKER because it is the primary key of LOCKER and

is italicized in MEMBER because it is a foreign key in MEMBER.

100

MEMBER

!D MemberNumber 1.1

MemberName 1.1

Address 0.1

Phone 0.1

LOCKER
1.1

LOCKER

ID LockerNumber 1.1

LockerType 1.1

Combination 0.1

Location 0.1

MEMBER
0.1

Figure 3.12 (a): One-to-One Compound Objects

MEMBER (MemberNumber, MemberName, Address, Phone, LockerNumber)

LINEITEM (LockerNumber, LockerType, Combination, Location)

Figure 3.12 (b): MEMBER and LOCKER Relations

In general, for a 1:1 relationship between two compound objects, we define one relation

for each object, and we place the key of either relation as a foreign key in the other

relation

b. Representing 1:N Compound Objects

Figure 3.13 (a) shows an example of a 1:N object relationship between

EQUIPMENT and REPAIR. An item of EQUIPMENT can have many REPAIRS, but a

REPAIR can be related to only one item of EQUIPMENT. The objects in Figure 3.13 (a)

are represented by the relations in Figure 3.13 (b). Observe that the key of the parent (the

object on the one side of the relationship) is placed in the child (the object on the many

side of the relationship).
101

EQUIPMENT

10 SerialNumber n

Type u

Model 0.1

Location 0.1

REPAIR
O.N

REPAIR

JD InvoiceNumber-1.1

Date 1.1

Description 0.1

Cost 0.1

EQUIPMENT
1.1

Figure 3.13 (a): One-to-Many Compound Objects

EQUIPMENT (SerialNumber. Type, Model, Location)

REPAIR (InvoiceNumber. Date, Description, Cost, SerialNumber)

Figure 3.13 (b): EQUIPMENT and REPAIR Relations

One to many compound objects are transformed into relations by representing

each object with a relation and placing the key of the parent (the object on the one side of

the relationship) in the child (the object on the many side of the relationship).

c. Representing M:N Compound Objects

Figure 3.14 (a) shows the M:N relationship between BOOK and

AUTHOR. Figure 3.14 (b) depicts the three relations that represent these objects: BOOK,

AUTHOR, and BOOK-AUTHOR-INTERSECTION. The attributes of BOOK-

AUTHOR- INTERSECTION relation are underlined and in italics, because they both are

local and foreign keys.

102

BOOK

ID ISBN LI

Title Li

Publisher 0.1

CopyrightDate 0.1

AUTHOR
1.N

AUTHOR

ID SSNLI

AuthorNamei.i

Address 0.1

Phone 0.1

BOOK
1.N

Figure 3.14 (a): BOOK and AUTHOR Compound Objects

BOOK (ISBN, Title, Publisher, CopyrightDate)

AUTHOR (SSN, AuthorName, Address, Phone)

BOOK-AUTHOR-INTERSECTION (ISBN, SSN)

Figure 3.14 (b): BOOK, AUTHOR, and BOOK-AUTHOR-INTERSECTION
Relations

In general, for two objects that have an M:N relationship, it is necessary to define

three relations; one for each of the objects and a third intersection relation. The

intersection relation represents the relationship of the two objects and consists of the keys

of both of its parents.

4. Transformation of Hybrid Objects

Hybrid objects can be transformed into relational designs using a combination of

the techniques for composite and compound objects. Figure 3.15 (a) shows SALES-

ORDER hybrid object, and related objects.

103

SALES-ORDER

IS SalesOrderNumberi.i

Date 1.1

CUSTOMER

SALESPERSON

1.1

1.1

Lineltem

ID ITEM
1.1

Quantity 1.1

ExtendedPrice 1.1

Subtotal 1.!

Tax 0.1

Total 1.1

0.N

ITEM

iß ItemNumber u

ItemDescription n

UnitPrice 0.1

SALES-ORDER
0.N

CUSTOMER

IB CustomerSSN 1.1

CustomerName 1;1

Address 0.1

SALES-ORDER

SALESPERSON

iQ SalesPersonSSN 1.1

SalesPersonName 1.1

SalespersonCode 0.1

SALES-ORDER
0.N

Figure 3.15 (a): SALES-ORDER Hybrid Object and ITEM, CUSTOMER, and

SALESPERSON Compound Objects

104

SALES-ORDER (SalesOrderNumber, Date, Subtotal, Tax, Total,

CustomerSSN, SalesPersonSSN)

CUSTOMER (CustomerSSN, CustomerName, Address)

SALESPERSON (SalesPersonSSN, SalesPersonName,

SalespersonCode)

ITEM (ItemNumber, Item Description, UnitPrice)

LINEITEM (SalesOrderNumber. ItemNumber, Quantity, Extended Price)

Figure 3.15 (b): SALES-ORDER, ITEM, CUSTOMER, SALESPERSON, and

LINEITEM Relations

To represent this object by means of relations, we establish one relation for the object

itself and another relation for each of the contained objects CUSTOMER and

SALESPERSON. Then, as with a composite object, it is needed to define a relation for

the multi-valued group, which is Lineltem. Since this group contains another object,

ITEM, a relation is created for ITEM. All of the one to many relationships are

represented by placing the key of the parent relation in the child relation, as shown in

Figure 3.15(b).

105

5. Transformation of Association Objects

An association object is an object that associates two other objects. It is a special

case of compound objects that most often occurs in assignment situations. Figure 3.16 (a)

shows a FLIGHT object that associates an AIRPLANE with a PILOT. To represent

association objects, we define a relationship for each of the three objects, and then we

represent the relationships among the objects using one of the strategies used with

compound objects. In Figure 3.16 (b), one relation is defined for AIRPLANE, one for

PILOT and one for FLIGHT. The relationships between FLIGHT and AIRPLANE and

between FLIGHT and PILOT are 1:N, so we place the key of the AIRPLANE and the

key of the PILOT in the FLIGHT.

In general, when transforming association object structures into relations, one

relation is defined for each of the objects participating in the relationship. The key of

each of the parent relations appears as foreign key attributes in the relation representing

the association object. If the association object has no unique identifying attribute, the

combination of the attributes of the parent relations will be used to create a unique

identifier.

106

AIRPLANE PILOT

JD TailNumber 1.1 JD SocialSecurityNumber 1.1

Manufacturer 1.1 PilotName 1.1

Type 0.1 Address 0.1

PassengerCapacity 0.1 PhoneNumber 0.1

FreightCapacity 0.1 FlightHours 0.1

FLIGHT
O.N

FLIGHT
O.N

FLIGHT

iß FlightNumber 1.1

Date 1.1

OriginatingCity 0.1

-

DestinationCity 0.1

AIRPLANE
11

PILOT
1.1

Figure 3.16 (a): FLIGHT Association Object and AIRPI ,ANE and PILOT

Compound Objec ts

107

AIRPLANE (TailNumber. Manufacturer, Type, PassengerCapacity,

FreightCapacity)

PILOT (SocialSecuritvNumber. PilotName, Address, PhoneNumber,

FlightHours)

FLIGHT (FliqhtNumber. Date, OriginatingCity, DestinationCity,

TailNumberJSocialSecurityNumber)

Figure 3.16 (b): AIRPLANE, PILOT, and FLIGHT Relations

6. Transformation of Parent/Subtype Objects

To transform parent/subtype objects into relations, it is necessary to define a

relation for the parent object and one for each of the subtype objects. The key of each of

these relations is the key of the parent object.

Figure 3.17 (a) shows a parent object, EMPLOYEE, and a subtype object,

MANAGER. Figure 3.17 (b) shows the relational representation of these two objects.

Each object is represented by a table, and the primary key of all of the tables is the same.

EMPLOYEE

ID SocialSecurityNumber ^

EmployeeName 1.1

HireDate 0.1

Salary 0.1

MANAGER
O.ST

MANAGER

EMPLOYEE

ManagerTitleL!

ManagementLevel -u

StartDate 0.1

Office 0.1

Figure 3.17 (a): EMPLOYEE Supertype and MANAGER Subtype Objects

108

EMPLOYEE (SocialSecuritvNumber, EmployeeName, HireDate, Salary)

MANAGER (SocialSecuritvNumber, ManagerTitle, ManagementLevel,

StartDate, Office)

Figure 3.17 (b): EMPLOYEE and MANAGER Relations

7. Transformation of Archetype/Version Objects

Archetype/version objects are compound objects that model various iterations, re-

leases, or instances of a basic object. The objects in Figure 3.18 (a) model textboos for

which there are various editions. The relational representation of TEXTBOOK and

EDITION is shown in Figure 3.18 (b). One relation is created for TEXTBOOK, and

another is created for EDITION. The primary key of EDITION is the combination of the

key of TEXTBOOK and the local key (EditionNumber) of EDITION.

TEXTBOOK

Iß ISBN L-,

Title 1.1

Author 1.1

Publisher 0.1

EDITION
1.N

EDITION

iDEditionID

TEXTBOOK
1.1

EditionNumber 1.1

PublicationDate 1.1

NumberOfPages 0.1

1.1

Figure 3.18 (a): TEXTBOOK Archetype and EDITION Version Objects

109

TEXTBOOK (ISBN. Title, Author, Publisher)

EDITION (ISBN, EditionNumber. Publication Date, NumberOfPages)

Figure 3.18 (b): TEXTBOOK and EDITION Relations

110

IV. JAVA AND JAVA DATABASE CONNECTIVITY (JDBC)

The user will interact with the back-end database of the POET database system by

using the application program which is developed in Java programming language. The

application program written in Java will communicate with the database by using Java

Database Connectivity (JDBC) application program interface. This chapter will describe

Java and JDBC application programming interface (API) and how they can be used to

provide this type of interaction. It will summarize the attributes of Java programming

language and outline the JDBC API, classes, methods, and how they can be used by

applications to directly access a RDBMS.

A. JAVA

Java is a powerful and fully object-oriented programming language that makes it

possible to program for the Internet by creating applets, programs that can be embedded

in a web page. Instead of web pages with text and static graphics, Java applets can make

use of audio, animation, interactivity and video imaging.

But Java is more than a programming language for writing applets. It is being

used extensively for writing standalone applications as well. It is becoming so popular

that many people believe it will become the standard language for both general-purpose

and Internet programming.

Java is actually a platform consisting of three components: (1) the Java pro-

gramming language, (2) the Java library of classes and interfaces, and (3) the Java Virtual

Machine.

Ill

Java programs go through five phases in order to be executed. These are edit,

compile, load, bytecode verify, and execute. Figure 4.1 describes the specifics of a Java

development environment.

1. Editing

The Java source code is created and saved on disk with the file extension . j ava.

2. Compiling

The Java compiler creates the bytecode for the program and stores it on disk.

3. Loading

The class loader loads the bytecode into memory. The Java interpreter acts as the

class loader for Java applications

4. Bytecode verification

Bytecode verifier confirms that all bytecode is valid and does not violate any of

Java's security restrictions

5. Execution

Interpreter reads the bytecode and translates it into a machine language that the

computer can understand.

112

Editor Disk

Compiler ^ *. ^ w
Disk

Class Loader 4 t
Primary Memory ^ w

±_
Disk

Bytecode Verifier Primary Memory

Interpreter Primary Memory

Figure 4.1: Typical Java Environment [Ref: 5]

B. ADVANTAGES OF JAVA

Java builds on the strengths of C++. It has taken the best features of C++ and

discarded the more problematic and error-prone parts. To this lean core it has added

garbage collection (automatic memory management), multithreading (the capacity for

one program to do more than one thing at a time), and security capabilities. The result is

that Java is simple, elegant, powerful, and easy to use. [Ref. 10]

The following section will explain twelve features and advantages of Java in

detail.

113

1. Java Is Portable

One of the biggest advantages Java offers is that it is portable. Therefore, an

application written in Java is platform independent. Any computer with a Java-based

browser can run the applications or applets written in the Java programming language.

Developers don't need to modify applets or stand-alone applications code when changing

platforms.

The Java Virtual Machine is what gives Java its cross-platform capabilities.

Rather than being compiled into a machine language, which is different for each operat-

ing system and computer architecture, Java code is compiled into bytecodes.

With other programming languages, the compiler creates platform specific

machine language code. The problem is that other computers with different machine

instruction sets cannot understand that language. Java code, on the other hand, is

compiled into bytecodes rather than a machine language. These bytecodes go to the Java

Virtual Machine, which executes them directly or translates them into the language that is

understood by the machine running it. [Ref. 10]

In summary, this means that with the JDBC API extending Java, a programmer

writing Java code can access all of the major relational databases on any platform that

supports the Java Virtual Machine.

2. Java Is Object-Oriented

The Java programming language was designed from the start as an object-oriented

programming language. Simply stated, object-oriented design is a technique for

programming that focuses on the objects and on the interfaces to that object. Object-

114

oriented languages make program design focus on what to deal with rather than on how

to do something and enable designers to break up large projects into easily manageable

components. Another big benefit is that these components can then be reused. [Ref. 10]

Object-oriented languages use the paradigm of classes. In simplest terms, a class

includes both data and the functions to operate on that data. One can create an instance of

a class, also called an object, which will have all the data members and functionality of

its class. Because of this, it is possible to think of a class as being like a template, with

each object being a specific instance of a particular type of class.

The class paradigm allows one to encapsulate data so that specific data values or

function implementations cannot be seen by those using the class. Encapsulation makes it

possible to make changes in code without breaking other programs, which use that code.

If, for example, the implementation of a function is changed, the change is invisible to

another programmer who might invoke that function, and it doesn't affect his/her

program.

Java includes inheritance, or the ability to derive new classes from existing

classes. The derived class, also called a subclass, inherits all the data and functions of the

existing class, referred to as the parent class. A subclass can add new data members to

those inherited from the parent class. As far as methods are concerned, the subclass can

reuse the inherited methods, as is, change them, and/or add its own new methods.

3. Java Makes It Easy to Write Correct Code

In addition to being portable and object-oriented, Java facilitates writing correct

code. Programmers spend less time writing Java code and a lot less time debugging it.

115

The following is a list of some of Java's features that make it easier to write correct code:

[Ref. 10]

a. Garbage collection

With other programming languages a significant burden on the

programmer is the allocation and de-allocation of memory. Memory leaks in a program

can cause an application to crash. In Java, if an object is no longer being used, it is

automatically removed from memory by the Java garbage collector. Programmers don't

have to keep track of what has been allocated and deallocated, but, more importantly, it

stops memory leaks. [Ref. 10]

b. No Pointers

The No Pointers feature removes a significant source of errors in computer

programming. Java utilizes "object references" instead of memory pointers. This

eliminates problems concerning pointer arithmetic and "out of bounds" memory access

errors.

c. Strong Typing

Java enforces strong type checking, therefore many errors are caught at

compile time. Dynamic binding is possible and often very useful, but static binding with

strict type checking is used when possible. This significantly cuts down on run-time

errors.

116

d. Simplicity

Java keeps it simple by having one way to do something instead of having

several alternatives, as in some languages. The syntax for Java is a cleaned-up version of

the syntax for C++. There is no need for header files, pointer arithmetic (or even a pointer

syntax), structures, unions, operator overloading, virtual base classes, and so on. Java also

stays lean by not including multiple inheritance, which eliminates the errors and

ambiguity that arise when you create a subclass that inherits from two or more classes. To

replace the capabilities multiple inheritance provides, Java lets you add functionality to a

class through the use of interfaces. Such capabilities make Java easier to learn and use

correctly.

4. Java Includes a Library of Classes and Interfaces

The Java platform includes an extensive class library so that programmers can use

already-existing classes as is, create subclasses to modify existing classes, or implement

interfaces to augment the capabilities of classes. [Ref. 10]

Both classes and interfaces contain data members (fields) and functions

(methods), but there are major differences. In a class, fields may be either variable or

constant, and methods are fully implemented. In an interface, fields must be constants,

and methods are just prototypes with no implementations. To use an interface, a

programmer defines a class, declares that it implements the interface, and then

implements all of the methods in that interface as part of the class. In other words,

interfaces provide most of the advantages of multiple inheritance without its

disadvantages.

117

5. Java Is Extensible

A big plus for Java is the fact that it can be extended. It was purposely written to

be lean with the emphasis on doing what it does very well; instead of trying to do

everything from the beginning, it was written so that extending it is easy. Programmers

can modify existing classes or write their own new classes, or they can write a whole new

package. The JDBC API, the java.sql package, is one example of a foundation upon

which extensions are being built. [Ref. 10]

6. Java Is Secure

It is important that a programmer not be able to write subversive code for applica-

tions or applets. This is especially true with the Internet being used more and more

extensively for services such as electronic commerce and electronic distribution of

software and multimedia content.

The Java platform builds in security in four ways:

a. The way memory is allocated and laid out

In Java, an object's location in memory is not determined until run time, as
i ■

opposed to C and C++, where the compiler makes memory layout decisions. As a result,

a programmer cannot look at a class definition and figure out how it might be laid out in

memory. Also, since Java has no pointers, a programmer cannot forge pointers to

memory. [Ref. 10]

118

b. The way incoming code is checked

The Java Virtual Machine does not trust any incoming code and subjects it

to what is called bytecode verification. The bytecode verifier, part of the Virtual Machine,

checks that (1) the format of incoming code is correct, (2) incoming code doesn't forge

pointers, (3) it doesn't violate access restrictions, and (4) it accesses objects as what they

are.

c. The way classes are loaded

The Java bytecode loader, another part of the Virtual Machine, checks

whether classes loaded during program execution are local or from across a network.

Imported classes cannot be substituted for built-in classes, and built-in classes cannot

accidentally reference classes brought in over a network.

d. The way access is restricted for untrusted code

The Java security manager allows users to restrict untrusted Java applets

so that they cannot access the local network, local files, and other resources.

7. Java Is Multithreaded

Multithreading is simply the ability of a program to do more than one thing at a

time. The benefits of multithreading are better interactive responsiveness and real-time

behavior [Ref. 11]. For example, an application could be faxing a document at the same

time it is printing another document.

119

Or a program could process new inventory figures while it maintains a feed of current

prices. Threads in Java also have the capacity to take advantage of multiprocessor

systems.

8. Java Performs Well

Java's many advantages, such as having built-in security and being interpreted as

well as compiled, do have a cost attached to them. However, various optimizations have

been built in, and the bytecode interpreter can run fast because it does not have to do any

checking. For situations that require unusually high performance, bytecodes can be

translated on the fly, generating the final machine code for the particular CPU on which

the application is running, at run time. Java offers good performance with the advantages

of high-level languages but without the disadvantages of C and C++. [Ref. 10]

9. Java scales Well

The Java platform is designed to scale well, from portable consumer electronic

devices (PDAs) to powerful desktop and server machines. The Java Virtual Machine

takes a small footprint, and Java bytecode is optimized to be small and compact. As a

result, Java accommodates the need for low storage and for low bandwidth transmission

over the niternet. This makes Java ideal for low-cost network computers whose sole

purpose is to access the Internet. [Ref. 10]

120

10. Java Is Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like

HTTP and FTP. Java applications can open and access objects across the Net via URLs

with the same ease as when accessing a local file system. The networking capabilities of

Java is both strong and easy to use. Java even makes Common Gateway Interface (CGI)

scripting easier, and an elegant mechanism called servlets, makes server-side processing

in Java extremely efficient. The Remote Method Invocation (RMI) mechanism enables

communication between distributed objects. [Ref. 11]

11. Java Is Robust

Java is intended for writing programs that must be reliable in a variety of ways.

Java puts a lot of emphasis on early checking for possible problems, later dynamic (run-

time) checking, and eliminating situations that are error-prone. The Java compiler detects

many problems that, in other languages, would only show up at run time. [Ref. 11]

12. Java Is Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It is

designed to adapt to an evolving environment. Class libraries can freely add new methods

and instance variables without any effect on their clients. This is an important feature in

those situations where code needs to be added to a running program. [Ref. 11]

121

C. JDBC

Java Database Connectivity (JDBC) is an Application Program Interface (API)

developed by Sun Microsystems, that allows a Java program to communicate with a

database server using Structured Query Language (SQL) commands. It provides Java

programs the ability to communicate with relational database management systems

similar to Microsoft's Open Database Connectivity (ODBC) API [Ref. 4].

Java, being robust, secure, easy to use, easy to understand, and automatically

downloadable on a network, is an excellent language basis for database applications.

What is needed is a way for Java applications to talk to a variety of different databases.

JDBC is the mechanism for doing this. Using JDBC, it is easy to send SQL statements to

virtually any relational database. [Ref. 10]

There are four main steps in accessing a database using JDBC:

• Load the driver

• Establish a connection with the database

• Send SQL statements

• Process the results

The following section describes each step in detail:

1. Loading the driver

Loading the driver is accomplished by asking for an instance of the driver

explicitly, as in the following line:

Class. forName ("sun. jdbc. odbc. JdbcOdbcDriver") ;

122

There is no need to create an instance of a driver and register it with the Driver

Manager class because calling Class.forName will do that automatically.

2. Establishing a connection with the database

A connection is established by using the appropriate driver to connect to the

DBMS. The corresponding sub-protocol identifier is appended after the keyword jdbc:.

The following code explains how this is accomplished:

String user = "yuksel";

String password = "poet";

String url = "jdbc:odbc:POETDB";

Connection con = DriverManager.getConnection

(url, user, password);

3. Sending SQL statements

In order to execute a SQL statement on a relational database using JDBC, a

statement object must be created. The SQL statement to be executed is supplied as an

argument to the proper method of the statement object. The type of method differs

according to the query being executed. The following code shows how to create a

statement object and execute a simple UPDATE query:

123

String query = "UPDATE Personnel " +

"SET PhoneNumber = *(831)372-4408' " +

"WHERE LastName = 'Can' ";

Statement stmt = con.createStatement();

stmt.executeUpdate(query);

4. Processing the Results

When a SELECT statement is executed, the results of the query will be returned

in a ResultSet object defined in the JDBC package. The tuples in the ResultSet can be

retrieved using the next() method defined in the ResultSet class. The following code

shows how to create and execute a SELECT statement, retrieve the results and display

the tuples in the ResultSet object to the screen.

String query = "SELECT LastName FROM " +

"Personnel " +

"WHERE Department =' "Operations'";

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {

String name = rs.getString("LastName");

System.out.println(name);

}

124

D. JDBC CLASSES AND INTERFACES

1. DriverManager Class

The DriverManager class keeps track of available drivers and handles the creation

of connections between databases and appropriate drivers. By invoking the

getConnection() method of this class, a valid connection with the database can be

established.

The DriverManager class contains methods that are used to manage a set of JDBC

drivers. Each JDBC driver must provide a class that implements the Driver interface,

which is used by the DriverManager. As part of initialization, a program can explicitly

tell the DriverManager what driver to load, by using the Class.forName(<driver name>)

call. If the user does not use this call and attempts to create a connection object, the

DriverManager class will check with each registered driver to see if it can connect to the

given URL. If more than one driver can connect to the URL, the DriverManager will

invoke the first compatible driver encountered. [Ref. 4]

Connection objects are generated from the class DriverManager. When

getConnection() is called, the DriverManager will attempt to locate a suitable driver from

those loaded at initialization and those loaded explicitly using the same class loader as the

current applet or application. The URL provided to the getConnection() function names

the driver to be used to establish the connection. The connection protocol supported by

Sun is:

jdbc:<subprotocol>://<host>: <portnumber>/<datasource>

125

For example: String url = "jdbc:dbaw://131.120.1.91:8899/companyDB" uses jdbc

protocol with a dbaw (dbAnywhere) sub protocol to connect to port 8899, on host

131.120.1.91, and then presents the data source name companyDB to the port to locate

the specific database. The DriverManager uses this URL to find a registered Driver who

can connect to the source.

All DriverManager methods are declared static, which means that they operate on

the class as a whole, not on particular instances.

2. Connection Interface

A connection object represents a connection of your application to a database and

is used to execute the next phase of database access, creating a statement object, which

will allow the user to execute a SQL command. It can also be used to commit a change to

the database, as well as rollback.

An application can have one or more connections with a single database or it can

have simultaneous connections with multiple databases. The established connection

passes SQL statements to the connected database.

3. Statement Interface

There are three statement objects of which the inheritance hierarchy is: Statement,

PreparedStatement and CallableStatement. To obtain a statement object the user can call

Connection method createStatement(). The statement object can be used to execute a

SQL statement. This type of statement object is useful for SQL statements that will only

126

be generated once. There are three types of execute methods that can be used with

statement objects:

a. ExecuteO

boolean execute(String arg) throws SQLException;

This method executes arg, which is a SQL statement that may return one or more

result sets, one or more update counts, or any combination of these. This method is

useful if the designer doesn't know whether the statement will be an update or a query

operation. A call to this method executes a SQL statement and returns true if the result is

a ResultSet and returns false if the result is an update count.

b. ExecuteQueryO

ResultSet executeQuery(String arg) throws SQLException;

This method executes arg, which is a SQL statement that returns a single result set

representing the results of the provided query.

c. ExecuteUpdateO

int executeUpdate(String arg) throws SQLException;

This method executes a SQL INSERT, UPDATE, or DELETE statement that

doesn't have parameter placeholders. It may also be used to execute SQL statements

which return no value, such as CREATE TABLE or DROP TABLE.

127

4. PreparedStatement Interface

If the same SQL statement is executed many times, it is more efficient to use a

PreparedStatement. A SQL statement with or without IN parameters can be pre-

compiled and stored in a PreparedStatement object. A PreparedStatement object can be

more efficient than a Statement object, because it has been pre-compiled and stored by

the database. [Ref. 5]

To bind input parameters, setXXX methods are used where XXX can be any

primitive type or a String. The setXXX methods for setting IN parameter values must

specify types that are compatible with the defined SQL type of the input parameter. For

instance, if the IN parameter has SQL type Integer then setlnt() should be used. Columns

can be referenced by column index, which begin with one, for greater efficiency, or by

column name for convenience. The following example demonstrates how a

PreparedStatement can be effectively used to populate a table with 100 items, each with a

unique partlD.

PreparedStatement pstmt = con.prepareStatement(

"INSERT INTO Parts (partType, partlD, quantity) " +

"VALUES (?, ?, ?) ");

pstmt. setString (1, "Tire");

pstmt.setlnt(3, 4);

128

for(partID = 1; partID <= 100; partID++) {

pstmt.setShort(2, partID);

pstmt. executeUpdate ();

}

5. CallableStatement Interface

CallableStatement extends PreparedStatement and is used to execute stored

procedures. Stored procedures are blocks of SQL code that are stored in the database and

executed on the server. This increases efficiency for SQL Statements that are executed

often, by reducing the overhead of regenerating an access plan. The DBMS generates and

stores the access plan once, and other applications can use the procedure. [Ref. 4]

JDBC provides a stored procedure SQL escape that allows stored procedures to be

called in a standard way for all RDBMS's. This escape syntax has one form that includes

a result parameter and one that does not. If used, the result parameter must be registered

as an OUT parameter. The other parameters may be used for input, output or both.

6. ResultSet Interface

A ResultSet object provides access to a table of data generated by executing a

SQL statement. Table rows are retrieved in sequence. Within a row, column values can

be accessed in any order. The object maintains a cursor that points to the current row of

data, which can be traversed via the nextO method. The method next() moves the cursor

to the next row, and returns true if the row exists. ResultSet class provides methods that

allow access to the results of a query.

129

SQL Data Type JAVA data type Recommended getXXX

CHAR String getStringO

VARCHAR String getString()

LONGVARCHAR String getAsciiStreamO

getUnicodeStream()

NUMERIC java.math.BigDecimal getBigDecimal()

DECIMAL java.math.BigDecimal getBigDecimal()

BIT boolean getBooleanO

TINYINT . byte getByteO

SMALLINT short getShortO

INTEGER int getlntO

BIGINT long getLong()

REAL float getFloat()

DOUBLE double getDoubleO

FLOAT double getDoubleO

BINARY byte[] getBytes()

VARBINARY byte[] getBytesO

LONGVARBINARY byte[] getBinaryStreamO

DATE java.sql.Date getDate()

TIME java.sql.Time getTimeO

TIMESTAMP java.sql.Timestamp getTimestampQ

Table 4.1: SQL and Java Data Types and Recommended Conversion Methods

130

A ResultSet is automatically closed by the statement that generated it when that

Statement is closed, re-executed, or is used to retrieve the next result from a sequence of

multiple results. Various getXXX() methods can be invoked to retrieve different column

values. The SQL data types, the corresponding Java data types, and the recommended

method calls for conversion are shown in Table 4.1.

7. ResultSetMetaData Interface

The interface ResultSetMetaData provides information about the types and

properties of the columns in a ResultSet object. An instance of ResultSetMetaData

actually contains the information, and ResultSetMetaData methods give access to that

information.

The following code fragment, where stmt is a Statement object, illustrates creating

a ResultSetMetaData object:

ResultSet rs = stmt.executeQuery("SELECT * FROM

Parts"); ResultSetMetaData rsmd = rs.getMetaData();

The ResultSetMetaData getMetaDataO method returns a ResultSetMetaData

object which can provide detailed information about the ResultSet, to include column

information. This information is useful in presenting the ResultSet in an interface.

131

8. DatabaseMetaData Interface

The interface DatabaseMetaData provides information about a database as a

whole. One creates an instance of DatabaseMetaData and then uses that instance to call

methods that retrieve information about a database.

A DatabaseMetaData object is created with the Connection method getMetaData,

as in the following code, where con is a Connection object:

DatabaseMetaData dbmd = con.getMetaData();

The variable dbmd contains a DatabaseMetaData object that can be used to get

information about the database to which con is connected. This is done by calling a

DatabaseMetaData method on dbmd as in the following code fragment:

int length = dbmd.getMaxTableNameLength();

Many of the DatabaseMetaData methods return lists of information in Resultset

objects. Data is retrieved from these Resultset objects using the normal ResultSet

getXXX methods, such as getString() and getlnt().

132

E. JDBC AND CLIENT/SERVER MODELS

The JDBC API supports database access, utilizing both two-tier and three-tier

models. In the two-tier model, a Java applet or application communicates directly with

the database. This requires a JDBC driver that can communicate with the particular

DBMS being accessed. The user's SQL statements are delivered to the database and the

results of the statement are returned to the user. The database may be located on a remote

machine to which the user is connected via a network. This is referred to as a

Client/Server Configuration, with the user's machine as the client, and the machine

hosting the database as the server. The network in question can be an Intranet or an

Internet.

One issue that makes the client/server model attractive is that an organization can

store its business logic, a set of rules that enforce or implement an organization's policies,

on a central server. As with all corporate policies, the rules may change. Also, sine the

business logic can be fairly complex and lengthy, enforcing it in the client will make the

client code very large. So, by encapsulating all business logic on the server, organizations

can store and change the rules at one location, which reduces administrative costs.

Figure 4.2 describes the two-tier model using JDBC.

133

Java Application

JDBC

Client Machine

DBMS-proprietary protocol

Database server
DBMS

Figure 4.2: JDBC Two-Tier Model [Ref: 10]

In the three-tier model, commands are sent to a middle tier of services, which then

sends SQL statements to the database. The database processes the SQL statements and

sends the results back to the middle tier, which then passes them to the user. This makes

the three-tier model very attractive, because the middle tier makes it possible to maintain

control over access and the type of updates that can be made to the data. Another

advantage is that when there is a middle tier, the user can employ an easy-to-use higher-

level API, which is translated by the middle tier into appropriate low-level calls. The

client can operate as a multi-threaded application and let the intermediate server handle

the synchronization. In a three-tier architecture the middle layer can hide information

about the database server from the applet. Only the middle tier knows how to find and

manipulate the data. The secure intermediate server can provide the means to shield the

134

client from direct access to DBMS by providing a username and password because the

identification and authentication is accomplished at the server level. Figure 4.3 describes

the three-tier model using JDBC.

Java Applet or
| HTML browser Client Machine (GUI)

HTTP, RMI, CORBA, or other calls

Application Server
(Java) Server machine

(business logic)
JDBC

DBMS-proprietary protocol

(CZ- ~^=\
Database server DBMS

Figure 4.3: JDBC Three-Tier Model [Ref: 10]

F. JDBC DRIVERS

Database drivers provide the implementation of the abstract classes provided by

the JDBC API. The driver resides on the Java client machine and is used to establish a

connection to a relational database. The JDBC driver can be a JDBC/ODBC bridge, a

middleware protocol library, or a native database driver. The driver provides the interface

that accepts JDBC input from the Java application, and understands the vendor specific

relational database language and network protocols. It accepts the JDBC input from the

135

client application, translates it to a vendor specific protocol, and uses a vendor supporting

networking protocol to transmit the request across the network. [Ref: 4]

Figure 4.4 depicts the JDBC driver implementation.

Java Application

JDBC Driver Manager

JDBC-Net
Driver

JDBC-ODBC
Bridge Driver

Driver
A

Dr- iver
B

ODBC and
DB Drivers

▼ i r ' '

JDBC
API

JDBC Driver
API

JDBC
implementation
alternatives

JDBC
Middleware
Protocol

Proprietary database access protocols

Figure 4.4: JDBC Driver Implementation [Ref: 5]

There are four categories of JDBC drivers as designated by JavaSoft. [Ref. 12]

The following are the various classes of JDBC drivers available:

1. JDBC-ODBC Bridge plus ODBC Driver

The JDBC/ODBC Bridge was designed to take advantage of the large number of

ODBC enabled drivers. The bridge was intended to provide an initial solution until

database vendors could produce their own vendor specific JDBC drivers. Basically the

136

bridge converts the JDBC calls into ODBC calls. The ODBC driver manager, will invoke

the database vendor specific ODBC driver, and pass the calls to database driver for

further processing.

The client side application or applet uses the JDBC API to load the

"sun.jdbc.odbc.JdbcOdbcDriver". This driver translates the Java SQL statements into

ODBC format, then invokes the ODBC Driver Manager (odbc32.dll) which refers to the

odbc.ini file that contains a data source name and vendor specific driver it is associated

with. The vendor specific driver, or DLL, then translates the ODBC call into a vendor

specific call, and sends the request across the network to the database manager. The

process is reversed when a response is sent from the database manager back to the client

application. [Ref. 4]

2. Native-API partly-Java Driver

This type of driver converts JDBC calls on the client API to a vendor specific

query language and communication protocol for use on a DBMS [Ref. 5]. The drivers are

usually written in C, accept the Java calls, then map them to vendor specific calls. The

call then gets processed by the vendor specific driver, translating it into the DBMS's

specific query language and communication protocol. This is a partly Java driver, that

requires a vendor supplied library to translate JDBC functions into the DBMS's specific

query language, such as Oracle's OCI [Ref. 4].

137

3. JDBC-Net pure Java Driver

The JDBC-Net pure Java Driver translates JDBC calls into a database

independent network protocol, and passes this request to a middle tier server, which then

translates the request into a DBMS specific protocol. These drivers are attractive for

Internet/Intranet based multi-user data intensive applications (requiring access to multiple

databases). The JDBC-Net pure Java Driver contains a number of vendor specific drivers,

or can use the ODBC/JDBC driver to provide database access. The bridge can connect

the client to local databases, which must reside on the same machine as the middleware

server, such as MS Access, or to remote databases such as Oracle, MS SQL Server,

SyBase, InterBase, or IBM DB/2, stored on another machine. As can be expected, this

driver is slower than other JDBC drivers. However, this is the most flexible of all driver

implementations. [Ref. 4]

4. Native-protocol pure Java Driver

Native-protocol pure Java drivers convert the JDBC calls directly into the

network protocol used by the specific DBMS. This allows a direct call from the client

machine to the DBMS server and is a practical solution for Internet access. These drivers

can be written entirely in Java, and can provide just in time delivery of applets. The

Native-protocol pure Java drivers provide for the best database access because of the

direct translation, unfortunately they can only be supplied by the vendor and can only

interface with the vendor specific database. For example, Sybase jConnect is a Native-

protocol pure Java JDBC driver written entirely in Java and communicates directly to

Sybase data sources such as Sybase SQL Anywhere. Since many of these protocols are

138

proprietary in nature, the driver can only interface with vendor specific databases. The

most significant advantage of this driver is its speed, where the biggest disadvantage is

the loss of flexibility [Ref. 5].

5. Driver Selection

The selection of which type of driver to employ depends upon a number of

factors: number of databases requiring access, performance requirements, financial, and

system administration requirements. In the POET Database Application Program, I am

using the JDBC-ODBC Bridge plus ODBC Driver, which translates the Java SQL

statements into ODBC format and invokes the ODBC Driver Manager.

A JDBC/ODBC bridge is effective for an application server. A middleware server

provides the database access, so all ODBC drivers reside on that machine. The client

makes a call to the application server, which establishes the database connection and

returns a string or data stream to the client.

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

V. REQUIREMENTS ANALYSIS FOR POET DATABASE

This chapter provides information about both the database development process

and the requirements analysis for the POET database system.

A. DATABASE DEVELOPMENT PROCESS

The database development process described here consists of four phases:

requirements collection and analysis, conceptual database design, logical database

design, and physical database design.

1. Requirements Collection and Analysis

The first step in the database development process is requirements collection and

analysis. Requirements collection and analysis phase constitute the most important step

of the entire database design process, because most subsequent design decisions are

based on this step. The major task is collecting information content and processing

requirements from all the identified and potential users of the database. Analysis of the

requirements ensures the consistency of users' objectives as well as the consistency of

their views of the organization's information flow.

During this step, the database designers interview prospective database users to

understand and document their data requirements. These requirements should be

specified in as detailed and complete a form as possible. In parallel with specifying the

data requirements, it is useful to specify the known functional requirements of the

application. These consist of the user-defined operations that will be applied to the

141

database, and they include both retrievals and updates. [Ref. 1]

The purpose of this phase is to determine, as specifically as possible, what the

system must do. There are two tasks in this phase:

• Specify the data requirements.

• Determine the functional requirements.

a. Data Requirements

During the data requirements phase, the major goals are to build a data

model that documents the "things" that are to be represented in the database, to determine

the characteristics of those "things" that need to be stored and to determine the

relationships among them. The user's data model describes the objects that must be stored

in the database, along with their structure and the relationships that they have with one

another. The output of the data requirements phase is a statement of requirements. This

statement can take a variety of forms: a verbal description, an entity-relationship diagram,

semantic object diagram, one or more prototypes, or any combination of the above.

The "things" that are represented in the database are referred to as either

entities or semantic objects, depending on the modeling technique that the designer

follows. In this thesis, the semantic data model will be used as the high-level modeling

technique. Semantic Data Model was described in Chapter III.

142

b. Data Dictionary

A data dictionary is a catalog of requirements and specifications for a new

information system. It provides definitions of all the data items in the database. During

the definition phase, the analysts try to capture and store the data in the system, and find

the inputs and outputs that the system will generate. These are represented with pictorial

models such as data flow diagrams, relation diagrams, entities, data stores, etc. The data

dictionary expands this pictorial model and as a system analysis tool, captures the

detailed requirements for every input, output and data store. The suggested approach for

building the data dictionary should be in terms of "what" data are handled and not in

terms of "how" data are presented or formatted.

c. Process Requirements

All systems process data to produce information and maintain stored data.

These requirements should be logically modeled. In order to implement processes as

programs, a process model is needed. A process model is a picture of the flow of data

through the system and the processing that must be performed on that data. These

processes interact or interface with one another. These interactions take the form of data

flows between processes and is the reason that they are sometimes called data flow

models.

143

2. Conceptual Database Design

Once all the requirements have been collected and analyzed, the next step is to

create a conceptual schema for the database, using a high-level conceptual data model,

such as Entity-Relationship Model or Semantic Data Model. This step is called

conceptual database design. The conceptual schema is a concise description of the data

requirements of the user and includes detailed descriptions of the data types,

relationships, and constraints; these are expressed using the concepts provided by the

high-level data model. Because these concepts do not include any implementation details,

they are usually easier to understand and can be used to communicate with non-technical

users. The high-level conceptual schema can also be used as a reference to ensure that all

of the requirements are met and that the requirements do not include any conflicts. This

approach enables the database designers to concentrate on specifying the properties of the

data, without being concerned with storage details. [Ref. 1]

The main purpose of conceptual design is to represent information in a form that

is comprehensible to the user, independent of system specifics, but implementable on

several systems. The result of conceptual design is called the conceptual schema, because

it is a representation of the user's "world" view and independent of any DBMS software

or hardware considerations.

In order to build an effective database and related applications, a data model that

captures the users' perceptions closely is of great importance. The data model should

identify the entities and their attributes to be stored in the database and should define

their structure and the relationships among them.

144

After the conceptual schema has been designed, the basic data model operations

can be used to specify high-level transactions corresponding to the user-defined

operations identified during functional analysis. This also serves to confirm that the

conceptual schema meets all the identified functional requirements. Modifications to the

conceptual schema can be introduced if some functional requirements can not be

specified in the initial schema.

3. Logical Database Design

The next step in the database design is the actual implementation of the database,

using a commercial DBMS, such as Oracle, Sybase, Informix, DB2, or Access. The

major goal of the logical database design phase is to use the results of the conceptual

design phase and the processing requirements as input to create a DBMS-processible

schema as output.

Most currently available commercial DBMSs use an implementation data model,

such as Relational, Network, Hierarchical, or Object-Oriented, so the conceptual schema

is transformed from the high level data model into the implementation data model. This

step is called logical database design, and its result is a database schema in the

implementation data model of the DBMS. [Ref. 1]

After the semantic objects are developed in the conceptual database design phase,

these objects are transformed into an implementation data model during this phase. In this

thesis, the relational model, which is the most common data model used in commercial

DBMSs, will be used as the implementation data model. Therefore, the semantic objects

will be transformed into relations as described in Chapter III. After the relations are

145

created, they are then normalized. This is a very important part of the design, because we

need to be sure that the relations will not suffer from any update anomalies. The process

of normalization was discussed in Chapter II.

4. Physical Database Design

Finally, the last step is the physical database design phase, during which the

internal storage structures and file organizations for the database are specified. Physical

database design is the process of developing an efficient and implementable physical

database structure from a given logical database structure that has been shown to satisfy

user information requirements.

In parallel with these activities, application programs are designed and

implemented as database transactions corresponding to the high-level transaction

specifications. An application is the collection of menus, forms, reports, and programs

that provide a means of update, display, and control the objects of the data model.

During the application design, the specific structure of forms, reports, menus, and query

facilities are defined.

The application program for the POET database system is developed by using

Java, an object-oriented programming language, and JDBC, an Application Program

Interface (API) that allows a Java program to communicate with a database server using

Structured Query Language (SQL) commands. Chapter IV describes Java programming

language and JDBC Application Program Interface.

146

B. REQUIREMENTS ANALYSIS FOR POET DATABASE

Data requirements for the POET database system are captured in the form of

semantic objects and associated data dictionary. This application consists of seven

semantic objects, which are ship, department, division, personnel, operation, equipment,

and training, and the semantic object diagrams of these objects are shown in Appendix A.

1. Ship Object

The ship object represents the frigate on which the POET database system will be

installed. The ship is uniquely identified by its international call sign. Ship object has

International Call Sign, Ship Name, Hull Number, Ship Class, Keel Laying Date, Launch

Date, and Commission Date simple attributes that provide information about the ship's

identity and history. It also has Length, Width, Mast Height, Keel Depth, and

Displacement simple attributes that describe the ship's physical dimensions.

In order to keep track of the overhaul information, multivalued group attribute

Overhauls containing simple attributes Overhaul Number, Start Date, End Date, Shipyard

Name, and Overhaul Duration is placed within the ship object. The ship belongs to a

higher command, and the attribute Immediate-Superior-In-Command keeps this data.

Another attribute of the ship is the name of its Homeport.

The group attribute Planned Manning stores the number of the personnel that

should be stationed on the ship and it has the attributes Planned Officers, Planned Petty

Officers, and Planned Enlisted. Present Manning group attribute, on the other hand, stores

the actual number of the personnel currently stationed onboard and it has the attributes

Present Officers, Present Petty Officers, and Present Enlisted.

147

2. Department Object

The Turkish Navy frigates are organized into six departments; Operations,

Engineering, Weapons, Electronics, Navigation, and Supply. The Department object

represents the departments within the ship and stores the department specific information

needed by the command. A department is uniquely identified by its name and it is

controlled by the Department Head, who is an officer. Department object has the simple

attribute Department Name, and group attributes Planned Manning and Present Manning.

Every department contains zero or more DIVISIONS and one or more PERSONNEL.

3. Division Object

The departments on the Turkish Navy frigates are organized into divisions. The

Division object represents the divisions within the ship and stores the division specific

information needed by the command. Similar to a department, a division is uniquely

identified by its name and it is controlled by the Division Officer. Division object has the

simple attribute Division Name, and group attributes Planned Manning and Present

Manning. Every division contains one or more PERSONNEL and it belongs to one and

only one DEPARTMENT.

4. Personnel Object

The Personnel object represents the crewmembers who consist of officers, petty

officers, and enlisted people stationed on the ship. Every person has a unique military

identification number.

148

The personnel onboard the ship work for a department and a division under that

department; therefore, the Personnel object contains semantic object attributes

DEPARTMENT and DIVISION.

Personnel object has the following simple attributes that provide personal

information: Military Identification Number, First Name, Last Name, Rank, Rating, Date

of Birth, Place of Birth, Father's Name, Mother's Name, Active Duty Service Date, Date

of Rank, Sex, Marital Status, Spouse Name, Number of Children, Street, City, State, Zip

Code, and Phone Number.

The command is also interested in other personal data, like the person's training,

previous assignments, and foreign languages. The multivalued group attribute Courses-

To-Take specifies the military courses that the person should take according to his/her

career. Courses-Taken, which is another multivalued group attribute, describes the

courses taken by the person and it includes TRAINING object, Start Date, End Date, and

Grade attributes. The person may have been assigned to zero or more previous duties

before the ship, so Previous Assignments group attribute, with the simple attributes

Assignment Number, Station, Position, and Duration, stores this information. Language

Name and Degree represent the foreign languages that the person knows.

Another useful data about the personnel is the Specialty and background

Education. As soon as the person embarks, he/she is assigned a Cabin Number and

Cabin Phone Number. Also, the Current Assignment and Start Date of the current duty

are stored within the Personnel object.

149

5. Training Object

The training of crewmembers is of great importance for their career and it is a

continual activity. There are required military courses that crewmembers have to attend

in order to get promoted and to be assigned to some duties. The ship's command needs to

know what courses the personnel have attended, the start date, the end date, and the

degree or grade that the person obtained. It is also necessary to keep track of the courses

that the person must take in order to perform his/her task successfully.

Each course is uniquely identified by the course name. The Training object has

the simple attributes Course Name, Training Center, Course Duration, and Course

Description, which provide the needed information by the command about the courses.

6. Operation Object

The data about the operations is one of the most frequently searched information,

because most of the reports and messages are related with the ship's operations. The

exercises in which the ship has participated constitute the main part of the operations

information. The command needs to know the Exercise Name, Exercise Type, Start Date,

End Date, Duration of the Exercise, and Place of the Exercise, which are the simple

attributes of the Operations object.

It is also required to store data about the specific events executed during the

exercises. Therefore, the multivalued group attribute Events serves this purpose, while

containing Event Name, Event Type, Event Duration, and Number of Events attributes.

Port Visits group attribute keeps the data about the ports that have been visited by the

150

ship during an exercise. It includes Port Name, Visit Start Date, Visit End Date, and Visit

Duration simple attributes.

The command also keeps track of the Underway Hours, separating them as

Daytime and Nighttime Underway Hours. Another property of an operation is its cost.

So, Cost of Exercise group attribute provide the Fuel Cost, Ammunition Cost, and

Amortization Costs.

The frigates generally host helicopters during the operations. Helicopter group

attribute, which contains Helo Tail Number, Flying Duration, Number of Dippings, and

Dipping Duration, keeps the helicopter information needed by the command.

7. Equipment Object

The ship contains a lot of equipment that have critical role in the functionality of

the ship. The ship's immediate-superior-in-command wants to know the status of the

ship's equipment, such as which of them are out-of-order, which are operating efficiently,

which one has frequent failures. In order to serve this purpose, Equipment object is

defined as part of the POET database. Every equipment has a Serial Number, a Stock

Number, an Equipment Name, an Equipment Type, a Manufacturer, a Model, a

Production Date, and Runtime that shows the total number of operating hours since the

equipment's installation. Serial Number is an attribute that can uniquely identify each

equipment.

151

Since the failures constitute a substantial fraction of the necessary information

about equipment, a multivalued group attribute, Failures, is included within the

Equipment object. Failure Number, Failure Description, Diagnosis, Failure Date, and

Failure Duration are the simple attributes contained within Failures group attribute.

C. DATA DICTIONARY FOR POET DATABASE

The data dictionary presents a tabular specification of the POET data model and it

consists of two parts: Semantic Object Specifications and Domain Specifications. The

semantic objects, their attributes, minimum, and maximum cardinalities are defined in the

Semantic Object Specifications table. This table is an alternative presentation of the

information provided by the semantic object diagrams, and it is shown in Appendix B.

The Domain Specifications table describes the domains of the objects and

attributes. This table, however, supplies information about domains that is not available

from the semantic object diagrams. The semantic and physical description of each

domain is provided in this table, which is shown in Appendix C.

152

VI. LOGICAL DATABASE DESIGN FOR POET DATABASE

This chapter discusses the logical database design for the POET database system.

In logical database design, the semantic object model developed in the previous chapter is

transformed into a relational schema, in preparation for the database implementation

using a specific DBMS. The POET database will be implemented in Microsoft Access

97, which is an easy-to-use, affordable, and true relational database management system.

The seven semantic objects describing the personnel, operations, equipment, and

training subjects onboard Turkish Navy frigates are transformed into relational tables.

The semantic objects are transformed into relations by using the rules described in

Chapter III. As a result of the conversion process, fifteen relational tables are obtained.

The semantic objects and the corresponding relations that are defined are shown in Figure

6.1. The relationships among the tables are represented using foreign keys and are also

shown explicitly on the relational schema. In this diagram, which is shown in Appendix

D, primary keys are underlined and made boldface while foreign keys are italicized in

order to distinguish them from other attributes. The relations shown in Appendix D, their

attributes, and relationships among them are discussed in the following sections.

A. RELATIONAL TABLES OF POET DATABASE

The transformation of seven semantic objects has yielded the following fifteen

relations: SHIP, OVERHAULS, PERSONNEL, COURSES-TO-TAKE, COURSES-

TAKEN, ASSIGNMENTS, FOREIGN-LANGUAGES, DEPARTMENT, DIVISION,

TRAINING, OPERATION, EVENTS, PORTVISITS, EQUIPMENT, and FAILURES.

153

SEMANTIC OBJECT RELATIONAL TABLE

SHIP \ SHIP
; w-

h, OVERHAULS w

PERSONNEL s. PERSONNEL
) W

k. COURSE-TO-TAKE w-

w COURSES-TAKEN w

k ASSIGNMENTS w

^ FOREIGN-LANG. p

OPERATION \ OPERATION
) w-

EVENTS P

PORT-VISITS ^

154

SEMANTIC OBJECT RELATIONAL TABLE

EQUIPMENT w EQUIPMENT W

w. FAILURES w

DEPARTMENT DEPARTMENT

DIVISION >. DIVISION

TRAINING TRAINING

Figure 6.1: Semantic Object - Relational Table Transformation

1. Ship Relation

The SHIP relation contains information about the frigate on which the POET

database system will be installed and it is derived from the SHIP object. Each attribute of

the semantic object is defined as an attribute of the relation, and the identifying attribute,

International Call Sign, becomes the primary key of the relation.

155

The SHIP table consists of the following attributes: International Call Sign, Ship

Name, Hull Number, Ship Class, Keel Laying Date, Launch Date, Commission Date,

Length, Width, Mast Height, Keel Depth, Displacement, Homeport, Immediate Superior

In- Command, Planned Officers, Planned Petty Officers, Planned Enlisted, Present

Officers, Present Petty Officers, and Present Enlisted.

2. Overhauls Relation

The OVERHAULS relation provides the necessary data needed by the command

about the overhauls of the ship. This relation is derived from the SHIP object. Since

Overhauls is a multivalued group attribute of the SHIP object, a new relation is defined in

order to translate the semantic data model correctly into relational model. The primary

key of the OVERHAULS table is International Call Sign and Overhaul Number, which is

the composite of the identifier of the SHIP object plus the identifier of the Overhauls

group attribute.

The other attributes of this relation are Start Date, End Date, Shipyard Name, and

Overhaul Duration. There is a one-to-many relationship between the SHIP table and the

OVERHAULS table, because the ship may have zero or more overhauls.

3. Department Relation

This relation contains information about the departments of the ship. It is derived

from the DEPARTMENT object. Each attribute of the semantic object is defined as an

attribute of the relation. The primary key of the DEPARTMENT table is Department

Name, and the other attributes are Planned Officers, Planned Petty Officers, Planned

156

Enlisted, Present Officers, Present Petty Officers, and Present Enlisted.

Every department contains zero or more divisions, so the DEPARTMENT table

has a one-to-many relationship with the DIVISION table. It has also one-to-many

relationship with the PERSONNEL table, because each department has one or more

crewmembers working for it.

4. Division Relation

The DIVISION relation contains information about the divisions, the

organizational unit under the departments. It is derived from the semantic object,

DIVISION. Each attribute of the semantic object is defined as an attribute of the relation,

and the identifying attribute, Division Name, becomes the primary key of the relation. It

also contains the foreign key, Department Name, which establishes the 1 :M relationship

between DEPARTMENT and DIVISION tables.

Planned Officers, Planned Petty Officers, Planned Enlisted, Present Officers,

Present Petty Officers, and Present Enlisted are the other attributes contained in this

relation. Similar to the DEPARTMENT table, it has one-to-many relationship with the

PERSONNEL table.

5. Personnel Relation

The PERSONNEL relation contains information about the ship's crewmembers,

including the officers, petty officers, and the enlisted. It is derived from the

PERSONNEL semantic object. The primary key of this relation is the Military

Identification Number.

157

The PERSONNEL table consists of the following attributes that provide personal

information: Military Identification Number, First Name, Last Name, Department Name,

Division Name, Rank, Rating, Date of Birth, Place of Birth, Father's Name, Mother's

Name, Active Duty Service Date, Date of Rank, Gender, Marital Status, Spouse Name,

Number of Children, Street, City, State, Zip Code, Phone Number, Specialty, Education,

Current Assignment, Start Date, Cabin Number, and Cabin Phone Number.

This relation has many-to-one relationships with DEPARTMENT and DIVISION

relations, because a crewmember works for a department and a division under that

department. For each multivalued group attribute of the PERSONNEL object, a new table

is defined. Therefore, COURSES-TO-TAKE, CORSES-TAKEN, ASSIGNMENTS, and

FOREIGN-LANGUAGES tables are created. Since all of these tables represent specific

personal information, the PERSONNEL table has one-to-many relationships with

COURSES-TO-TAKE, CORSES-TAKEN, ASSIGNMENTS, and FOREIGN-

LANGUAGES relations.

6. Courses-To-Take Relation

This relation provides information about the military courses that the personnel

should take. It is derived from the PERSONNEL object, because Courses-To-Take is a

multivalued group attribute of the PERSONNEL semantic object. The primary key of the

COURSES-TO-TAKE table is Military Identification Number and Course Name, which

is the composite of the identifier of the PERSONNEL object plus the identifier of the

TRAINING object. This relation does not include any attributes, but the primary key.

158

COURSES-TO-TAKE table has many-to-one relationships with PERSONNEL

and TRAINING tables. It can also be viewed as an association table between

PERSONNEL and TRAINING tables, that converts a many-to-many relationship to two

one-to-many relationships.

7. Courses-Taken Relation

COURSES-TAKEN relation contains information about the military courses that

the personnel have previously taken. Like COURSES-TO-TAKE relation, it is derived

from the PERSONNEL object, because Courses-Taken is a multivalued group attribute of

the PERSONNEL semantic object. The primary key of the CORSES-TAKEN table is

Military Identification Number and Course Name, which is the composite of the

identifier of the PERSONNEL object plus the identifier of the TRAINING object. Unlike

the COURSES-TO-TAKE table, this relation also includes three more attributes, which

are Start Date, End Date, and Grade.

COURSES-TAKEN table has many-to-one relationships with PERSONNEL and

TRAINING tables. It can also be viewed as an association table between PERSONNEL

and TRAINING tables, that converts a many-to-many relationship to two one-to-many

relationships.

8. Assignments Relation

This relation provides information about the previous assignments of the

personnel. ASSIGMENTS relation is derived from the PERSONNEL object, because

Assignments is a multivalued group attribute of the PERSONNEL semantic object and

159

for each multivalued attribute, a new relation must be defined. The primary key of the

ASSIGMENTS table is Military Identification Number and Assignment Number that is

composed of the identifier of the PERSONNEL object plus the identifier of the

Assignments group.

The other attributes of the relation are Station, Position, and Duration.

ASSIGMENTS table has a many-to-one relationship with PERSONNEL table.

9. Foreign-Languages Relation

FOREIGN-LANGUAGES relation contains information about which foreign

languages are known by which crewmembers. It is derived from the PERSONNEL

object, because Foreign-Languages is a multivalued group attribute of the PERSONNEL

semantic object. The identifier of the PERSONNEL object and the identifier of the

Foreign-Languages group constitute the primary key of the FOREIGN-LANGUAGES

table. Hence, the primary key is Military Identification Number plus Language name. It

also includes the attribute Degree, which shows the status of the person's language level.

FOREIGN-LANGUAGES table has a many-to-one relationship, with

PERSONNEL table.

10. Training Relation

This relation stores information about the military courses that are related with the

personnel's training. It is derived from the TRAINING semantic object. The primary key

of TRAINING relation is Course Name.

160

Other attributes of this relation are Training Center, Course Duration, and Course

Description. TRAINING table has one-to-many relationships with COURSES-TO-TAKE

and COURSES-TAKEN tables, because both of these two tables include the Course

Name, the primary key of TRAINING table, as foreign key.

11. Operation Relation

The OPERATION relation contains information about the operations and

exercises that the ship has participated in. This relation is derived from the OPERATION

semantic object. Exercise Name is the primary key of OPERATION relation.

Exercise Type, Start Date, End Date, Duration, Place, Daytime Underway Hours,

Nighttime Underway Hours, Helo Tail Number, Flying Duration, Number of Dippings,

Dipping Duration, Fuel Cost, Ammunition Cost, Amortization, and Cost of Exercise are

the other attributes that are included in the OPERATION table.

OPERATION relation has one-to-many relationships with PORT-VISITS and

EVENTS relations, because during an operation, zero or more ports may be visited and

zero or more events may be executed.

12. Events Relation

This relation provides information about the events that are performed during

exercises and operations. EVENTS relation is derived from the OPERATION object,

because Events is a multivalued group attribute of the OPERATION semantic object and

for each multivalued attribute, a new relation must be defined. The primary key of the

EVENTS table is Exercise Name and Event Name that is composed of the identifier of

161

the OPERATION object plus the identifier of the Events group.

The other attributes of the relation are Event Type, Number of Events, and Event

Duration. EVENTS table has a many-to-one relationship with the OPERATION table.

13. Port-Visits Relation

The PORT-VISITS relation contains information about the port visits that are

carried out during exercises and operations. Similar to EVENTS relation, this relation is

also derived from the OPERATION object, because Port-Visits is a multivalued group

attribute of the OPERATION object. The identifier of the OPERATION object and the

identifier of the Port-Visits group constitute the primary key of the PORT-VISITS table.

Therefore, the primary key is Exercise Name and Port Name.

The PORT-VISITS relation also includes Visit Start Date, Visit End Date, and

Visit Duration attributes. PORT-VISITS table has a many-to-one relationship with the

OPERATION table.

14. Equipment Relation

The EQUIPMENT relation provides information about the equipment onboard the

ship and their status. It is derived from the EQUIPMENT semantic object. The primary

key of the EQUIPMENT relation is Serial Number, a unique identifier for every item of

equipment.

Serial Number, Stock Number, Equipment Name, Equipment Type,

Manufacturer, Model, Production Date, Location and Runtime are the other attributes that

are included in the EQUIPMENT table.

162

EQUIPMENT table has a one-to-many relationship with FAILURES table,

because equipment may have zero or more failures.

15. Failures Relation

This relation stores information about the equipment failures. It is derived from

the EQIPMENT object, because Failures is a multivalued group attribute of the

OPERATION semantic object. The primary key of the FAILURES table is the

combination of Serial Number, the identifier of the EQUIPMENT object and Failure

Number, the identifier of the Failures group.

The other attributes of the FAILURES table are Failure Description, Failure

Diagnosis, Failure Date, and Failure Duration. FAILURES table has a many-to-one

relationship with the EQUIPMENT table.

B. POET DATABASE RELATIONSHIPS

The relationships among the fifteen relational tables described in the previous

section are shown in the following figure.

163

w), Microsoft Access - (Relationships!

fag «e Ed* gew Relationships Tools VÄndow • a* :

D G» B1 <S a ^ U tiß^l^ls0 8 x ffilä-ig

1 InternationaiCa
ShipName
HuBNumber i-
ShipClass i
KeeLayingDate y"{

DivisionNarne jjs
DepartmentNa * '
PlannedOfficer_|
PlannedPettyC- ;',
PlannedEnlistei^l

BBafL-
ExeraseName
PortName
VisitStartDate
VisitEndDate
VisitDuration

ilzi^

iUFFrey
iIntemabooalCal_i
OverhauHurabei
StartDate f?
EndDate r§-
OverhaulDuratioli-j

MtoryED
CourseName
StartDate
EndDate
Grade

DepartmenCNan^
Plannedofficers'
PlannedPettyOf
PlannedEnlisted'
PrwentOfficeri^l

fflfffW?-11'
jrataryB) fl i JFirstName

■ JLastName
'JDepartmentName -i
■JDivisionName

»Rank ±1

MtaryJD
CourseName

s«

3 ExeraseName
ExerciseType
StartDate
EndDate j|:fc
Duration -§|:

ExerdseNatne
EventName
EventType
NumberOfEvents
EventDuration

MtaryK)
AssignmertNumb
Station
Position
Duration

MtarylD
language
Degree

Te>x>
iejxf

3
se

CourseName
TrainingCenter
CourseDuration
CourseDescriptior

SeriaWumberj^
StockNumber
EquipmentNar.
EquipmentTyp
ProductionDatyj

-7

±
SeriaNumber j£
FaJurcNunberr
FailureDescript; :

FailureDiagnosr—
JFailureDate ijr)

LftoäSy;.. "r~:
^

4JUM

Figure 6.2: POET Database Relationship Diagram Expressed in Relational

Database Referential Integrity Constraints

164

VII. IMPLEMENTATION OF POET DATABASE AND

DEVELOPMENT OF APPLICATION PROGRAM

This chapter will discuss the implementation issues for both POET database and

the application program.

A. POET DATABASE IMPLEMENTATION

In POET database implementation, the relations and their attributes developed

during the logical database design are transformed into tables and data fields,

respectively. As stated earlier, Microsoft Access database management system is used as

the DBMS of choice for POET database implementation. Therefore, the relational tables

are created in Microsoft Access by choosing Tables/New/Design View from the database

dialog box.

The structure of the new empty table, which matches the corresponding relation

developed during the design phase, is then specified. For each attribute of the relation,

field name, data type, and optional description are entered. After the field name and data

type are described, by using the field properties section of the table design grid, more

specific properties can be defined; such as Field Size, Format, Input Mask, Caption,

Default Value, Validation Rule, Validation Text, Required, Allow Zero Length, Indexed,

and Lookup. Upon definition of all attributes of the relation, the primary key is specified

and the new table is saved by giving it a name; i.e., Personnel.

165

Brief descriptions of the field type choices are displayed on the table design grid

to assist the user in creating the new table. The data types supported by Microsoft Access

are shown in Figure 7.1.

Data Type Type of Data Stored Storage Size

Text Alphanumeric characters 0-255 characters

Memo Alphanumeric characters 0-64,000 characters

Number Numeric Values 1,2,4, or 8 bytes

Date/Time Date and Time 8 bytes

Currency Monetary data 8 bytes

Auto Number Automatic number increments 4 bytes

Yes/No Logical values: True/False 1 bit (0 or 1)

OLE Object Pictures, graphs, sound, video Up to 1GB

Hyperlink Link to an Internet source 0-6,144 characters

Lookup Wizard Displays data from another table Generally 4 bytes

Figure 7.1: Data Types Available in Microsoft Access

Once the definition of a table is completed, the user can enter values in the table

directly in datasheet format or through a form. In this implementation, the user will be

using data entry forms provided by the application program, instead of MS Access forms.

The following figure shows the table definition for Operation relation.

166

^. Microsoft Access - [Operation : Table)

lü Ete £ttt View Insert Tools Window Help

m Field Name
ExerciseName
ExerctseType
StartDate
EndDate
Duration
Place
DayTimeÜnderwayHours
NightTimeUnderwayHours
HeloTailNumber
HyingDuration
NumberOfDippings
DippingDuration
FuelCost
AmmunitionCost
Amortization
CostOfExercise

'Data'7ype;': aPe'sorfetioa'
Text
Text
Text
Text
Number
Text
Number
Number

"Text
Number
Number
Number
Number
Number
Number
Number

-''j^ProBcrees1::

MM

1

"il

Genera! J Lookup |

ReHStee 30
■ Fors>aV;:iJ:;
Input Mask
Caption
Default Value
Valuation Rule
VafcJaSonTeXt
Requred Yes
Alow Zero Length No
indexed ■,',;'. Yes (No Duplicates)

A field name can be up to 64 characters long, inducing spaces. Press Fl for help on
fieldnames.

IJDesiorvviewv:S6»SirÄchpanes. Ft«.Hefe."; JITjjNLMj

Figure7.2: Table Design View for Operation Relation

POET database also includes thirteen predefined queries that will support the

reports and the static queries of the application program. These queries are created with

the Access method Query by Example (QBE). In this method, the user first selects the

tables that will be used in the query. When the user enters instructions into the QBE

window, Access translates them into SQL statements and retrieves the desired data by

filtering the records, selecting only those meeting the query criteria. Figure 7.3 shows the

QBE window for the Previous Assignments Query.

167

^. Microsoft Access • [AssignmentQuety : Select Quer»]

jlpj^l18 Sft jflew- frscrt ■'S«y:!i«fc.--ä^i*w Help

B^JH^^^l £ ahe^lojiP-j ! 1% s j AP ^[gg~\ j © & ^

t-|g|x|

MtaryB)
FirstName -Si
LastName :. ;
DepartmentName ' •
OivisionName
Rank __ j
Rating jjC|

MtorylD
Asagnmenmunber
Station
Position
Duration

1

Figure7.3: QBE Window for Previous Assignments Query

B. APPLICATION PROGRAM IMPLEMENTATION

The purpose of developing an application program is to allow the ship personnel

to access the information in a windows-based environment without the need of a database

management system environment, and thus to eliminate the need for learning a database

management system. The architecture of the POET application program is shown in

Figure 7.4.

168

Application Program

End
User <=>

User
Interface

Control Logic

JDBC-ODBC
Bridge

Figure 7.4: POET Application Program Architecture

The application program is developed by using Java programming language and

Java Database Connectivity (JDBC), an Application Program Interface (API) that allows

a Java program to communicate with a database server using Structured Query Language

(SQL) commands. JDBC provides the object-oriented application program the ability to

communicate with Microsoft Access relational database management system via JDBC-

ODBC Bridge. Java and JDBC were described in Chapter IV. The complete Java code for

the POET application program is included in Appendix F.

169

The application program consists of a graphical user interface (GUI) and a control

logic that allows the users to access the data stored in MS Access relational DBMS. It

provides data input forms, data update forms, tables, reports, and queries that are similar

to the ones supported by MS Access. The following section will discuss each of these

components in detail.

1. Input Forms

Data Input Forms are used to add new records into a database table in a quick,

easy, and accurate manner. POET application program includes the following input

forms. Figure 7.5 shows one of these forms, Operation Input Form.

Personnel Input Form

Operation Input Form

Equipment Input Form

Training Input Form

Overhaul Input Form

Courses-To-Take Input Form

Courses-Taken Input Form

Previous Assignments Input Form

Foreign Languages Input Form

Event Input Form

Port Visit Input Form

Failure Input Form

170

[^OPERATION FORM ■_ln|x

Exercise Name:

Exercise Type: SQUADRON EXERCISE .V:Wr\

Start Date:

End Date:

Duration (Days):

Place (SeaOcean):

Daytime Underway Hours:

Nighttime Underway Hours:

Helo Tail Number:

Helo Hying Time (Hours):

Number Of Dippings:
 „ _ „...„ „,„ _.„.,_.____~_-™^ .i

Total Dipping Tone (Hours):

Fuel Cost:

Ammunition Cost:

Amortization:

Cost Of Exercise: 1;
i'

j ADD RECORD > < s lüi&y^^V-"-] CANCEL i

Figure 7.5: Operation Input Form

2. Update Forms

Data Update Forms are the user's primary interface for modifying and deleting

records in a table. POET application provides the same number of update forms with the

same names as input forms. On the one hand, updates forms are similar to input forms,

because they have the same labels, text fields, and layout. On the other hand, their

purpose and use are different. Update forms are used to modify or delete records from

tables, whereas input forms are used to enter new records to tables. Also, the user has to

specify an identifying attribute of the record to be updated in a preceding dialog box.

Figure 7.6 shows the "Select Exercise" dialog box for the Operation Update Form.

171

||HSelect Exercise m
_-
Bpfl Enter Exercise Name: SeaWorm-94

OK Cancel

Figure 7.6: Select Exercise Dialog Box for Operation update Form

When the user specifies the name of the exercise to be updated in the Exercise Name text

field, the update form with "Delete Record", "Update Record", and "Cancel" options

appear on the screen. Figure 7.7 shows the Operation Update Form.

KOOPERATION FORM IHHHB^B _ lof
Exercise Name: SEAWORM-94 ;

Exercise Type: [FLEET EXERCISE ▼

Start Date: 106/02/1994

End Date: 106/30/1994

Duration (Days): I28

Place (Sea/Ocean): [Mediterranean Sea, Aegean Sea, Marmara Sea

Daytime Underway Hours: ;482

Nighttime Underway Hours: U59

Helo Tail Number: ;H41

Helo Flying Time (Hours): H 50

Number Of Dippings: ;25

Total Dipping Time (Hours): ;65
t

Fuel Cost: [210000.0

Ammunition Cost: J80000.0

Amortization: |110000.0

Cost Of Exercise: Uooooo.o

| ÄK>SECOfiC : DELETE RECORD UPDATE RECORD ! CANCa

Figure 7.7: Operation Update Form

172

3. Tables

Tables in the POET application program display all the records in a database table

as a series of rows and columns, similar to the MS Access datasheet format. When the

user clicks on the appropriate button, the corresponding table appears with its records.

The following figure shows the Training Table.

1? TRAINING TABLE HEE3
Wer-Cell Spacing =®= Row Height

CourseName 'TfalnlnqCenter -: CoürseDuration fcöurSePescüptiön

1 Communications

CIC

Wepaons

Operations Electronics

Weapons Electronics

Helicopter Controller

Commanding Officer

Executive Officer

Chief Engineer

3KARAMURSEITRAININO CENTER

IKARAMURSEL TRAINING CENTER

■KARAMURSEL TRAINING CENTER

: DERINCE TRAINING CENTER

DERINCE TRAINING CENTER

i YILDIZLAR TRAINING CENTER

IY1LDIZLAR TRAINING CENTER

! YILDIZLAR TRAINING CENTER

DERINCE TRAINING CENTER

8i Communications:Course prepares the newly..

8' CIC Course gives the necessary background..

6 Weapons Course educates the Wepons Offi...

32; Operations Electronics Course trains the Offi..

32; Wepaons Electronics Course trains the Offic...

4; Helicopter Controller Course prepares the CL

4: Commanding Officer Course educates the C

4! Executive Officer Course educates the Execut..

6 Chief Engineer Course educates the Chief E...

Figure 7.8: Training Table

173

4. Reports

Reports are the main outputs that the POET database system generates for

viewing the information in desired format. Reports can combine multiple tables to

present the final output, which is created from different sets of data. This is accomplished

by incorporating a query into the report design. POET application program provides the

following reports, all of which contain data from two or more tables and all of which

employ a static query.

• Overhaul Report

• Division Report

• Training Report

• Previous Assignment Report

• Foreign Language Report

• Event Report

• Port Visit Report

• Failure Report

The reports present the information in tabular format, as in Figure 7.9 for Port

Visit Report.

174

fgPORT VISIT REPORT —-'=1^1

EXERCISE NAME PORT NAME START DA1E END DATE

DYNAMIC MTX-93 NAPOU 10/10/1993 10/13/1993 !

SEAWORM-94 IZMIR 06/10/1994 06/13/1994 | (
ANTALYA 06/18/1994 06/20/1994 |

MERSUN 06/23/1994 06/24/1994 !

ERTENDSHIP-97 VARNA 04/16/1997 04/18/1997

SEAWORM-96 CANAKKALE 06/09/1996 06/11/1996

MARMARIS 06/15/1996 06/18/1996

1 ANTALYA 06/22/1996 06/23/1996
|

DISTANT THUNDER-98 IZMIR 04/16/1998 04/18/1998

ISTANBUL 04/22/1993 04/23/1998

Figure 7.9: Port Visit Report

5. Queries

Queries are used to extract information from the database. A query can select and

define a group of records that fulfill a certain condition. The POET application program

uses both dynamic and static queries to retrieve the information. In dynamic query case,

the user can write the actual SQL statements that will return the desired records.

175

However, in static query case, the SQL code is already defined in the application

program. The only thing that the user has to do is to specify the required selection

condition, such as the last name in a query that shows the previous assignments of the

person.

POET application program provides the following seven static queries, as well as

the dynamic query.

• Courses-To-Take Query

• Courses-Taken Query

• Previous Assignments Query

• Foreign Languages Query

• Port Visits Query

• Events Query

• Failures Query

Similar to update forms, before executing the query, the user has to specify a

selection condition in a dialog box. Upon entering the identifying criteria, the result of the

query is presented in a datasheet format, which consists of a number of rows and

columns. As an example, the dialog box and the result of the Exercise/Event Query are

shown in Figure 7.10 and Figure 7.11, respectively.

176

||| Select Exeicise

Enter the Exercise Name: Sea Worm-94

OK Cancel

Figure 7.10: Select Exercise Dialog Box

^EXERCISE/EVENT QUERY

Inter-Celt Spacing RowHfcight

ExerciseName EvehtName -: EvertfTvpe EvenlDuration

SEA WORM-94

SEA WORM-94

SEA WORM-94

SEA WORM-94

SEA WORM-94

SEA WORM-94

;SURFEX-310

:SURFEX-316

: CASEX C-5

j EWX-320

j NAVCOMEX-408

! NAVCOMEX-605

:■ ANTiSURFACE WARFARE

; ANTISURFACE WARFARE

i ANTISUBMARINE WARFARE

IANTIAIR WARFARE

; COMMUNICATIONS

: COMMUNICATIONS

22

11

19

10:

5

4

Figure 7.11: Exercise/Event Query

177

THIS PAGE INTENTIONALLY LEFT BLANK

178

VIII. SYSTEMS IMPLEMENTATION AND SUPPORT

The quality of an information system depends on its design, development, testing,

and implementation. One aspect of systems quality is its reliability. A system is reliable if

it does not produce dangerous or costly failures when used in a reasonable manner. An

additional aspect of quality assurance is avoiding the need for enhancement on the one

hand developing software that is maintainable on the other. The need for maintenance is

high and impedes new developments. Maintenance and quality assurance needs are also

better met when a structured development and documentation tool is used.

Quality assurance also includes testing to ensure that the system performs

properly and meets its requirements. The purpose of testing is to find errors, not to prove

correctness.

Implementation includes all those activities that take place to convert from the old

system to the new. The new system may be totally new, replacing an existing manual or

automated system, or it may be a major modification to an existing system. In either case,

proper implementation is essential to provide a reliable system to meet organization

requirements.

This chapter discusses the five aspects of systems implementation and support;

including maintenance, quality assurance, reliability, training, and conversion.

179

A. SYSTEMS MAINTENANCE

When systems are installed, they generally are used for long periods of time. The

average life of a system is four to six years, with the oldest applications often in use for

over 10 years. However, this period of use brings with it the need to continually maintain

the system. Because of the use a system receives after it is fully implemented, analysts

must take precautions to ensure that the need for maintenance is controlled through

design and testing and the ability to perform it is provided through proper design

practices.

Many private, university, and government studies have been conducted to learn

about maintenance requirements for information systems. The studies have generally

concluded that: [Ref. 13]

• From 60 to 90 percent of the overall cost of software during the life of a

system is spent on maintenance.

• Often maintenance is not done very efficiently. In documented cases, the

cost of maintenance when measured on a per instruction basis is more than

50 times the cost of developing it in the first place.

• Software demand is growing at a faster rate than supply. Many pro-

grammers are spending more time on systems maintenance than on new

development. Studies have documented that in some sites, two-thirds of the

programmers are spending their time on the maintenance of software.

180

Information systems and the organizations they serve are in a constant state of

flux. Therefore, the maintenance of systems also involves adaptations of earlier versions

of the software. Approximately one-fifth of all maintenance is performed to

accommodate changes in reports, files, and data.

The greatest amount of maintenance work is for user enhancement, improved

documentation, or recording systems components for greater efficiency. Sixty percent of

all maintenance is for this purpose. Yet, many of the tasks in this category can be avoided

if systems' engineering is carried out properly. The design practices followed for

software dramatically affect the maintainability of a system: good design practices

produce a product that can be maintained.

The keys to reducing the need for maintenance, while making it possible to do

essential tasks more efficiently, are: [Ref. 13]

• More accurately defining user requirements during systems development

• Assembling better systems documentation

• Using more effective methods for designing processing logic and

communicating it to project team members

• Making better use of existing tools and techniques

• Managing the systems engineering process effectively

181

B. QUALITY ASSURANCE

Quality assurance is the review of software products and related documentation

for completeness, correctness, reliability and maintainability. And it, of course, includes

assurance that the system meets the specifications and requirements for its intended use

and performance.

There are four levels of quality assurance: testing, verification, validation, and

certification.

1. Testing

Systems testing is an expensive, but critical, process that may take as much as 50

percent of the budget for program development. The common view of testing is that it is

performed to prove that there are no errors in a program. However, as indicated earlier,

this is virtually impossible since analysts cannot prove that software is free and clear of

errors.

Therefore, the most useful and practical approach is with the understanding that

testing is the process of executing a program with the explicit intention of finding errors,

that is, making the program fail. The tester, who may be an analyst, programmer, or

specialist trained in software testing, is actually trying to make the program fail. A

successful test, then, is one that finds an error.

2. Verification

Like testing, verification is also intended to find errors. It is performed by

executing a program in a simulated environment. When commercial systems are

182

developed with the explicit intention of distributing them to dealers for sale or marketing

them through offices, they first go through verification, which is sometimes, called alpha

testing.

3. Validation

Validation refers to the process of using software in a live environment in order to

find errors. The feedback from the validation phase generally produces changes in the

software to deal with errors and failures that are uncovered. Then a set of user sites is

selected that put the system into use on a live basis. These beta test sites use the system in

day-to-day activities; they process live transactions, and produce normal system output.

The system is live in every sense of the word, except that the users are aware they are

using a system that can fail. Validation may continue for several months. During the

course of validating the system, failure may occur and the software will be changed.

4. Certification

Software certification is an endorsement of the correctness of the program. This is

an issue that is rising in importance for information systems applications. To certify the

software, the agency appoints a team of specialists who carefully examine the

documentation for the system to determine what the vendor claims the system does and

how it is accomplished. Then they test the software against those claims. If no serious

discrepancies or failures are encountered, they will certify that the software does what the

documentation claims. They do not, however, certify that the software is the right

package for a certain organization. [Ref. 13]

183

5. Testing Strategies

It is already indicated that the philosophy behind testing is to find errors. Test

cases are devised with this purpose in mind. A test case is a set of data that the system

will process as normal input. However, the data is created with the intent of determining

whether the system will process it correctly. Each test case is designed with the intent of

finding errors in the way the system will process it.

There are two general strategies for testing software. This section examines both,

the strategies of code testing and specification testing.

a. Code Testing

The code-testing strategy examines the logic of the program. To follow

this testing method, the analyst develops test cases that result in executing every

instruction in the program or module. That is, every path through the program is tested. A

path is a specific combination of conditions. [Ref. 13]

On the surface, code testing seems to be an ideal method for testing

software. The rationale that all software errors can be uncovered by checking every path

in a program is faulty. First of all, in even moderately large programs of the size used in

typical business situations, it is virtually impossible to do exhaustive testing of this

nature. Financial and time limitations alone will usually preclude executing every path

through a program since there may be several thousand.

However, even if code testing can he performed in its entirety, it does not

guarantee against software failures. This testing strategy does not indicate whether the

code meets its specifications nor does it determine whether all aspects are even

184

implemented. Code testing also does not check the range of data that the program will

accept even though when software failures occur in actual use, it is frequently because

users submitted data outside of expected ranges.

b. Specification Testing

To perform specification testing, the analyst examines the specifications

stating what the program should do and how it should perform under various conditions.

Then test cases are developed for each condition or combination of conditions and

submitted for processing. By examining the results, the analyst can determine whether the

program performs according to its specified requirements. [Ref. 13]

This strategy treats the program like a black box. That is, the analyst does

not look into the program to study the code and is not concerned about whether every

instruction or path through the program is tested.

Neither testing strategy is ideal. However, specification testing is a better

strategy since it focuses on the way software is expected to be used.

C. TRAINING

Even well designed and technically elegant systems succeed or fail because of the

way they are operated and used. Therefore, the quality of training the personnel involved

with the system in various capacities helps or hinders, and may even prevent, the

successful implementation of an information system. Those who will be associated with

or affected by the system must know in detail what their roles will be, how they may use

the system, and what the system will or will not do.

185

User training must ensure that they are able to handle all possible operations, both

routine and extraordinary. Training involves familiarization with run procedures, that is,

working through the sequence of activities needed to use a new system on an ongoing

basis. The operators should also be instructed in the common malfunctions that can

occur, how to recognize them, and what steps to take when they arise.

User training must also instruct individuals in troubleshooting the system,

determining whether a problem arising is caused by the equipment or software or by

something they have done in using the system. Including a troubleshooting guide in

systems documentation will provide a useful reference long after the training period is

over. There is nothing more frustrating than working with a system, encountering a

problem, and not being able to determine whether it is your fault or a problem with the

system itself. The place to prevent this frustration is during training.

As the above discussion demonstrates, there are two aspects to user training:

familiarization with the processing system itself (that is, the equipment used for data

entry and processing) and training in using the application (that is, the software that

accepts the data, processes it, and produces the results). Weaknesses in either aspect of

training are likely to lead to awkward situations that produce user frustration, errors, or

both. Good documentation, although essential, is not a substitute1 for training. There is no

substitute for hands-on operation of the system while a person is learning how to use the

program.

186

D. CONVERSION

Conversion is the process of changing from the old system to the new one. There

are four methods of handling a systems conversion. Each method should be considered in

light of the opportunities it offers and problems that it may cause. However, some

situations force one method to be used over others, even though other methods may be

more beneficial. In general, systems conversion should be accomplished as quickly as

possible. Long conversion periods increase the possible frustration and difficulty of the

task for all people involved. [Ref. 13]

1. Parallel Systems

The most secure method of converting from an old to new system is to run both

systems in parallel. That is, users continue to operate the old system in the accustomed

manner but they also begin using the new system. This method is the safest conversion

approach since it guarantees that, should problems arise in using the new system, such as

errors in processing or inability to handle certain types of transactions, the organization

can still fall back to the old system without loss of time, revenue, or service.

The disadvantages of the parallel systems approach are significant. First of all, the

system costs double since there are now two sets of systems costs. In some instances, it is

necessary to hire temporary personnel to assist in operating both systems in parallel.

Second, the fact that users know they can fall back to the old ways may be a disadvantage

if there is potential resistance to the change or if users prefer the old system. [Ref. 13]

187

All in all, the parallel method of systems conversion offers the most secure

implementation plan if things go wrong, but the costs and risks to a fair trial cannot be

overlooked.

2. Direct Conversion

The direct conversion method converts from the old to the new system abruptly,

sometimes over a weekend or even overnight. The old system is used until a planned

conversion day. Then it is replaced by the new system. There are no parallel activities.

If the management must make the change and wants to ensure that the new

system fully replaces the old one so that users do not rely on the previous methods, direct

conversion will accomplish this goal. Psychologically, it forces all users to make the new

system work; they do not have any other method to fall back on. The advantage of not

having a fallback system can turn into a disadvantage if serious problems with the new

system arise. In some instances, organizations even stop operations when problems arise

so that difficulties can be corrected. [Ref. 13]

Direct conversion requires careful advanced planning. Training sessions must be

scheduled and maintained. The installation of all equipment must be on time, with ample

days allowed in the schedule to correct any difficulties that occur. Any site preparation

must be complete before the conversion can be done.

188

3. Pilot Approach

When new systems also involve new techniques or drastic changes in

organization performance, the pilot approach is often preferred. In this method, a working

version of the system is implemented in one part of the organization, such as a single

work area or department. The users in this area typically know that they are piloting a

new system and changes may be made to improve the system.

When the system is deemed complete, it is installed throughout the organization,

either all at once (direct conversion) or gradually (phase-in). [Ref. 13]

This approach has the advantage of providing a sound proving ground before full

implementation. However, if the implementation is not properly handled, users may

develop the impression that the system continues to have problems and cannot he relied

on.

4. Phase-In Method

The phase-in method is used when it is not possible to install a new system

throughout an organization all at once. The conversion of files, training of personnel, or

arrival of equipment may force the staging of the implementation over a period of time,

ranging from weeks to months. Some users will begin to take advantage of the new

system before others, [Ref. 13]

Long phase-in periods create difficulties for analysts, whether the conversions go

well or not. If the system is working well, early users will communicate their enthusiasm

to others who are waiting for implementation. In fact, enthusiasm may reach such a high

level that when a group of users does finally receive the system, there is a letdown. Later,

189

when conversion occurs, the staff finds out that the system, even though working

properly, does not do the processing instantly.

On the other hand, if there are problems early in the phased implementation, word

of difficulties will spread also. Then the users may expect difficulties when they are

converted and react negatively to the smallest mistakes, even their own.

E. SYSTEMS RELIABILITY

A reliable system is one that does not produce dangerous or costly failures when

used in a reasonable manner, that is, in a manner that a typical user expects is normal.

This definition recognizes that systems may not always be used in the ways that designers

expect.

There are two levels of reliability. The first is that the system meeting the right

requirements. If it is expected to have specific security features or controls, but the design

fails to specify them, then the system is not reliable. Reliability at the design level is only

possible if a through and effective determination of systems requirements was performed

by the analyst. A careful and through systems study is needed to satisfy this aspect of

reliability.

The second level of systems reliability is the actual working of the system

delivered to the user. At this level, systems reliability is interwoven with software

engineering and development. [Ref. 13]

190

IX. ANALYSIS OF POET DATABASE SYSTEM

This chapter analyzes the use, benefits and installation of the POET Database

System that will support the administrative activities on the Turkish Navy frigates by

storing, processing, and accessing the personnel, operations, equipment, material and

training data.

The chapter is divided into four sections. In the first section, the chapter gives a

brief introduction about the current situation of information processing in the Turkish

Navy frigates and then compares the file-processing systems with the database processing

systems. The second section provides an analysis of the benefits of the system from

managerial, manpower, and technical aspects. The third section analyzes the system

implementation and installation issues by explaining the training and conversion phases

in detail. In the last section, the impact of the computer technology in the organizations is

examined.

A. CURRENT SITUATION

Today, the frigates are the most effective, powerful, and capable vessels among

the warships. The modern frigates are designed as multi-purpose combatants, which can

be used in anti-air, anti-surface, and anti-submarine warfare. They can serve as both

offensive and defensive vehicles according to the needs of the circumstances.

As it is the case in most navies, the frigates constitute the main force of the Turkish Fleet.

The Turkish Navy frigates have a challenging mission, which encompasses tactical,

operational, and administrative tasks. Because of their powerful weapons and

191

maneuvering capabilities, the frigates are also the most active warships in the Turkish

Navy. They participate in lots of operations, exercises, and maneuvers while conducting a

number of deployments. This'intense tempo causes a heavy burden of administrative and

bureaucratic tasks. There is a large volume of reports, messages, and documents that are

required either for the submission to the higher command or for the ship's internal use.

The documents to be generated may be periodic reports, prepared daily, weekly, monthly,

bimonthly, and annually, or they may be ad hoc reports that may be requested anytime.

In the Turkish Navy frigates, it is a time consuming process to prepare some

documents, because the information needed is not stored in a single and central database

management system. The organization of the frigates consists of six departments, which

are Operations, Engineering, Electronics, Navigation, Weapons, and Supply

Departments. Each department in the ship keeps its data in different formats and

environments, such as Microsoft Word, Microsoft Excel, Word Perfect, Frame Maker, or

other special application programs. There is neither a standard format nor a software

program to store, manipulate, and access the data. When it is required to generate a

report, which will include information from two or more departments, a person from the

administrative office has to collect that data from the departments manually.

This technique, which is known as File-Processing System, has many drawbacks

compared to the Database Processing Systems.

. 192

B. FILE-PROCESSING SYSTEMS

The file-processing systems, which predated the use of database processing

systems, are a great improvement over manual record keeping systems, however they

have the following limitations. [Ref. 3]

1. Data Redundancy

The first drawback of file-processing systems is uncontrolled redundancy of data

and data duplication. Since every department keeps the data in a different environment

and different file, generally the same information is stored in more than one department's

files. For instance, both the Operations and the Navigation departments store the data

about the exercises and navigation times. This results in the same data being stored in

separate files that must exist for each different system.

2. Data Inconsistency

Although the duplicate data wastes personnel time and file space, that is not the

most serious problem; rather, the biggest problem with the duplicate data concerns data

consistency and data integrity. Poor data integrity can often be seen in file-processing

systems, because it is very difficult to keep the redundant data consistent. The greater the

degree of redundant data, the more difficult it becomes to insure that the data is accurate

and timely. For example, if the start and end times of an exercise change, then each file

containing this data must be updated, but the danger is that all of the files might not be

updated, causing discrepancies among them.

193

Therefore, a report from the Operations Department may disagree with a report

from the Navigation Department. When the retrieved information are inconsistent, the

credibility and the reliability of the stored data comes into question.

3. Limited Sharing of Data

Another disadvantage of file-processing systems is the limited sharing of data.

Because of their different formats and file structure incompatibilities, the data files can

not be readily combined or compared. This limitation restricts the extent to which

applications are able to share each other's data. The difference in the definitions of data

among the various files will result in difficulty for users to cross-reference data elements

in other files. Suppose that it is necessary to compare the electronic equipment inventory

of the Supply Department to that of the Electronics Department. Since they store their

inventories in different environments and different file structures, this would be a

burdensome and time-consuming process.

4. Program/Data Dependency

In file-processing systems, application programs depend on the file formats,

because the physical formats of files and records are usually part of the application code.

Therefore, individual data structures were developed for specific applications, and each

program within each system has been designed to process the records and data items of

its corresponding files. The problem with this arrangement is that when changes are made

in the file formats and data structures, such as adding a new record type, the application

programs also must be changed.

194

This makes it difficult to introduce changes and results in high maintenance

programming costs to cope with the inevitability of such changes.

5. Inflexibility of Information

Inflexibility of available information is another drawback of file-processing

systems. Files tend to isolate the information and restrict what can be retrieved. It is not

possible to get the information in a modified format, which can be quite useful for some

administrative purposes. The effectiveness of an organization's data resources require

flexibility, accuracy, the ability to support adequate response levels to inquiries, and a

large degree of data sharing across various applications.

6. Data Isolation

In file-processing systems, data are separated and isolated. Sometimes it may be

desirable to combine two or more files into a single file to retrieve the required

information, but with file processing, this is a very exhausting process. Generally, the

information that requires the combination of two or more files is gathered by a person

instead of the computer.

7. Difficulty in Representing Data

It is difficult to represent file-processing data in a form that seems natural to

users. Users want to see all related data in a single document, but in order to show the

data in this way, several different files need to be combined and the result is to be

presented together. For example, if a higher command wants a report from the ship after

195

each deployment that includes information about conducted exercises and training,

navigational and operational data, and the amount of ammunition and fuel used during

the deployment. In order to prepare such a report, it is necessary to combine all of the

departments' files together.

8. Difficulty in Information Resource Management

Information resource management is more difficult in file-processing systems.

Especially, data security is very difficult to achieve, because multiple files in separate

places cause more vulnerability. On the other hand, it is a big problem to enforce some

ship-wide and navy-wide standards on data storage systems.

C. DATABASE PROCESSING SYSTEMS

The database concept not only offers distinct advantages from the conventional

file processing approach, but also results in added value to an organization in what it can

realize from its data resources. A database system can significantly enhance the quality of

information, provide the basis for increased efficiency in programming, and introduce

tools for the effective management of information at all levels of an organization.

Database processing systems overcome the limitations of file-processing systems,

because file-processing programs store the data in different files and directly access the

files of stored data, while database-processing programs keep the data in a single

database and invoke the Database Management System (DBMS) to access the stored

data. DBMS is a set of programs used to define, administer, and process the database and

its applications. [Ref. 3]

196

In a database system, all of the data is stored in a single facility, called the

database. When this approach is applied to the Turkish Navy frigates, the departments in

the ship will no longer have separate data files; on the contrary, there will be a centralized

database, which will store information about personnel, operations, equipment, training,

and logistics, and an application program with a graphical user interface that will allow

the users to access the data in a windows-based environment. The application program

retrieves the required data by invoking the DBMS, which accesses and manipulates the

database. The following section explains the advantages of database processing systems

over the file processing systems in detail.

1. Minimum Data Redundancy

With database processing, the data redundancy is minimal as a result of the

centralization and the increased capability of data sharing. It is no longer necessary to

store the same information for different applications, because all programs have access to

the same data. The decrease in data redundancy results in greater data accuracy. Since the

data is stored in only one place, data integrity problems are less common. There is less

opportunity for inconsistency among multiple copies of the same data item, because

whenever the data is modified, only one update is sufficient. By integrating data into a

common location, standard program definitions of data can be established to satisfy

multiple uses.

197

2. Improved Data Sharing

Sharing of data is improved with the database processing approach. Data are

organized into a single, centralized database that allows combination of files and separate

views of the data. With database processing, it is possible to produce more information

from a given amount of data, because the tables/files are related to each other via

common data fields and they can be easily combined.

3. Increased Data Availability

Improved data sharing, searching versatility, and multiple views of data present to

programmers and users a data resource that can satisfy their demands for information.

The database, through ease of access, can increase data availability. Throughout the

organization, data will no longer be thought of as something that is the exclusive

province of the computer and the people who help run it.

4. Cost Reduction

A database environment increases the potential for the reduction of cost,

especially in one significant area: maintenance programming. Maintenance programming

costs are minimized through data independence by eliminating re-programming due to

changes in physical and logical data definitions.

5. Flexibility in Data Access

Database processing systems provide more flexibility in data access and retrieval.

Ad hoc reports as well as routine ones can be quickly prepared with this approach,

198

because the DBMS supports programmed and unprogrammed queries via Structured

Query Language (SQL). For example, it takes a few minutes to generate the deployment

report, since the tables can be joined together and the DBMS can be used to make the

appropriate query.

6. Advanced Security and Integrity

Another significant advantage of database processing systems is the advanced

security, privacy, and integrity controls. Since the data is stored in a centralized database,

security issues can be more effectively supported by giving accounts and passwords to

the authorized users. Also, navy-wide standards can be enforced in this system. An

integrated database will allow an organization to establish stringent access controls for

specific entities and their data items. For example, if personnel evaluation information is

not to be divulged, security provisions such as passwords can be assigned to segments of

the database. User or program access to this data, therefore, would only be allowed if the

proper authorization (e.g., use of a password) was established.

7. Program/Data Independence

Database processing reduces the dependency of application programs on file

formats, because a database can insulate an application program from changes made to

the structure of the data it uses. All record formats, along with the data, are stored in the

database itself, and they are accessed by the DBMS, not by the application programs.

Program/data independence minimizes the impact of data format changes on application

programs and provides great flexibility and efficiency. The data processing environment

199

is never static and the need for new information is ever present. By protecting existing

programs from these requirements, it is possible to satisfy these demands without

investing the people resources and money to change existing programs. In a conventional

file environment, changes to data structures almost always result in changes to those

application programs.

8. Dynamic Structure

Data independence also provides for the introduction of new technology and

processing techniques without the necessity of constant re-programming. A database can

be transferred to new storage devices or re-organized in ways that will enhance access

response time while leaving application programs unaffected.

D. BENEFITS OF THE POET DATABASE SYSTEM

1. Technical Aspect

The purpose of the database system is to store information about personnel,

operations, equipment, and training in a centralized database, to generate standard

reports, to provide ad hoc queries, and to support the administrative activities onboard the

Turkish Navy frigates. The database program will minimize the data redundancy and

increase the availability, accuracy, consistency, security, and integrity of data.

The database management system can be implemented cost effectively by using

Microsoft Access, which is a popular and economical Commercial Of The Shelf (COTS)

product. The application program that will provide the graphical user interface between

200

the user and the database management system can be developed with Java, which is a

very powerful and efficient yet free object-oriented programming language. The system

can be operated on a Personal Computer (PC), preferably the computer in the

administrative office. The administrative office personnel can be granted user accounts

and passwords, which will provide the control and security for the classified data.

The system can be designed with a user friendly graphical user interface, and

therefore the users of the system will be able to learn the program without the need of an

extreme training and advanced computer experience. As a result, this database

application program will provide the Turkish Navy with an affordable and efficient

system that will support administrative activities on the frigates and enforce the navy-

wide standards.

2. Manpower Aspect

In the current situation, at least one person is assigned to input, manipulate, and

analyze the data in each department. Besides, there is an administrative office that is

responsible for generating ship-wide reports and documents and for conducting the

common managerial tasks. There are four crewmembers stationed in this office, a petty

officer and three enlisted personnel. The Communications Officer, who is responsible for

all incoming and outgoing documents and messages, is in charge of the administrative

office. The main function of this office is to keep track of incoming documents and to

prepare the required documents and reports.

201

Since the ship lacks a centralized database system to store and access the data,

the administrative office personnel spend almost one-half of their time to gather the

necessary information from the departments. Counting the personnel responsible for data

storage and retrieval in six departments, there are about twelve crewmembers who strive

to achieve the same task: keep the data in a file, process it, and access the information

needed. This task is the main functionality of a database system, which provides much

more capabilities.

The use of a database system would greatly reduce the productive power loss and

work hours spent on administrative tasks that are instrumental in accomplishing the

Turkish navy frigates' principal tasks. In order to run such a database system effectively,

the administrative office personnel would be sufficient, because with this system they

could save a lot of time and would not have to collect the information manually.. This

means that by using this database system, the other six crewmembers may be employed

more efficiently in other tasks, which results in considerable saving in personnel power.

3. Decision Making Aspect

The Commanding Officer (CO), the Executive Officer (XO) and the Department

Heads may need to make decisions in a short period of time. As managers of the ship,

they want to analyze the situation by examining the available information that will help

them make their decisions. The decision making process is based on two decision

elements - the amount of information used in making a decision and the number of

alternatives considered [Ref. 14]. With respect to information use, the person in the

decision-making role, wants as much relevant information as possible before reaching a

202

decision. Nobody, it seems, wants to make a decision without having the necessary

information, because it increases the possibility of choosing the wrong alternative.

If the CO needs information to make a decision, having personnel collect the data

in order to propose a suggestion is a time-consuming process and it might produce

inconsistent and unreliable results. However, the use of a database system can help the

decision making process in the ship by providing accurate and timely information.

E. INSTALLATION OF THE POET DATABASE SYSTEM

1. Training

The training for the database system should be designed so that every user of the

system knows the system's features and functions and has knowledge about how to use

the system. The success of any information system depends on the skills of the operators.

In the Turkish Navy frigates, the main users of the database system will be the personnel

working in the ship's administrative office, who are familiar with the computers and

procedures on the ship and who only need to be trained on how the new system operates.

The Communications Officer leads the administrative office, whose personnel normally

consist of one petty officer and three enlisted personnel.

An important factor that can affect the success of the system and the training

phase is the design and implementation of the system. The database system and the

application program should be designed so that it is easy-to-use and does not require the

operators to have any advanced computer science knowledge. However, matching basic

203

human characteristics and skills with a job's requirements is essential, especially when

an automated system is to replace a manual one.

The training should make the users of the system familiar with the system's

interface as well as its functions and capabilities. Once the frigates have their

administrative office personnel trained, educating the other potential users on how to use

the system can be handled within the ship.

2. Conversion

The conversion from the. old system to the new one is one of the most important

phases of the installation from a managerial perspective. This normally because human

nature is inclined to resist changes, especially if they are not ready or prepared for these

changes. Factors such as organizational structure, human resources, and cultural climate

all come into play. Managers sometimes have to restructure the organization chart when a

computerized system is implemented. Human resources are often reallocated to and from

the new system in order to increase the efficiency of the new system. Conflicts among the

users and the personnel who don't believe in the benefits of the new system should be

expected. Furthermore, some people view training programs as a threat, because they

believe that evaluations made at the end of the training may be a negative factor in their

career.

When the new database system is built on the Turkish Navy frigates, the

crewmembers assigned to data storage tasks in the departments can be assigned to new

jobs.

204

Once the administrative office personnel are trained and gained the skills to use the new

system, they can handle the administrative activities by themselves without any extra

personnel support. [Ref. 15]

The four conversion strategies that can be used to install a new system in an

organization are already explained in Chapter II. For the POET Database Application

program, the Pilot Approach is proposed as the most appropriate strategy for the Turkish

Navy frigates. Two frigates must be selected as the pilot units in order to get sufficient

feedback. The conversion method to be applied to the pilot ships should be the Parallel

Systems approach for the following reasons.

• Risk is significantly minimized;

• Testing the system on two ships over a period of time will provide sufficient

information to evaluate the system before complete implementation on all

ships;

• Manpower need is reasonable;

• Surfaced problems can be worked out by the personnel of both ships;

• Time to shift is predicted to be two months, which is a reasonable interval for

checking monthly reports and for reassigning personnel from/to the ship.

As soon as the system operates efficiently on the pilot units, a decision for full

implementation on all ships can be made.

205

3. Integration

Integration of the converted files and applications into the database environment

has to be planned. For some period of time, there will be two sets of applications that will

run concurrently. Personnel must be trained for the new environment. The organization

can't be closed for the conversion and integration phases. The file environment is most

probably the production environment, and the data base environment will be the test

environment. The updates performed to the production files have to be transferred to the

test environment. It is important that the two systems represent the same information at

all times.

F. ASSESSING THE IMPACTS OF COMPUTER TECHNOLOGY

IN ORGANIZATIONS

Computer is often identified as the key device in the third revolution of

humankind. There are two powerful and contrary images widely linked with the use of

computer technology in organizations. In one view, the computer is the great problem

solver, producing important gains in the efficiency and effectiveness of personnel in their

work. In the contrasting view, computer is a problem generator - an expensive and

disruptive technology that has often failed to match its promises in many of the actual

tasks to which it has been applied. [Ref. 16]

There are some reasons why an organization might adopt computer technology.

The organization might use computers in order to symbolize its commitment to modern

management practices or to advanced technology. Or the organization might want to

206

indicate that its decisions and actions are guided by information systems, which can

process large amounts of data, rather than relying upon manual methods of information

storage and retrieval. Actually, the major reasons for computer utilization usually involve

expectations that computers will generate real benefits in information processing, and

ultimately in organizational performance.

With more than 200 crewmembers as the personnel and the CO and the XO as the

managers, the Turkish Navy frigates are no different than the other organizations in the

business world. Until now, the use of computer technology in the Turkish Navy frigates

have increased the technical and managerial capabilities of the ships, while helping the

managers in their decision making process and providing more time for the necessary

exercises that must be conducted by the personnel. Actually, the phenomenal expansion

in the use of computer technology is a significant proof that computers have generally

produced successful results in the organizations.

Among the benefits that might be anticipated from the use of computers in

organizations, those that improve the information environment are perhaps the most

obvious. The extensive information handling capabilities of computers are often used in

the field of data processing and database applications. The database system that would be

installed on the Turkish Navy frigates is expected to enhance the ship's administrative

capabilities to save personnel power and time, to improve data accuracy, consistency and

timeliness, and to provide the Turkish Navy with an affordable and efficient system.

207

The potential benefits of such a database system can be listed as follows:

the high speed with which information can be obtained

the ease of access to information

the availability of new information

the timeliness of the information

the accuracy and the consistency of information

the savings in the personnel employment

the improvements in the decision making process

G. CONCLUSION

From personal experience, the author served as a Communications Officer on

TCG YILDIRIM (F-243), one of the newest frigates of the Turkish Navy, for more than

three years. As the Communications Officer of the ship, the position included leadership

of the administrative office, in which one petty officer and two enlisted personnel were

stationed. When the ship is at the port, 80% of the time was spent on administrative tasks,

which mostly consisted of preparing reports and documents, and collecting the

information needed to generate these documents.

While doing/managing these activities, it was noticed by the personnel in the

administrative office as they felt the need for an information/database system that could

be used to store, process and access required the data.

208

By using such a database system that automates most of the manual tasks, it

could possibly save valuable time and personnel power while increasing the work volume

and efficiency of the administrative office.

As a result of having such an experience, it was desired that Turkish Navy frigates

had had this database application program to produce effective, quality reports that could

be analyzed with accuracy toward continual improvement in ship operations.

209

THIS PAGE INTENTIONALLY LEFT BLANK

210

X. CONCLUSIONS

A. SYNOPSIS

This thesis presented the design, development, implementation, and analysis of

the Personnel, Operations, Equipment, and Training (POET) Database and Application

Program for the Turkish Navy frigates on a standalone computer. The POET database

system will provide the Turkish Navy ships with an automated system to perform their

primary administrative functions. POET will support this mission by keeping track of all

the personnel, operations, equipment, and training records, maintaining them, producing

standard reports and providing the command with ad hoc information.

Besides implementing a database and an application program, this thesis has also

specified the current situation and the need for such a database application program

onboard Turkish Navy frigates. The main goal of developing the POET database system

is to release manpower to perform other duties and to reduce the productive power loss

by increasing the availability, accuracy, efficiency, and consistency of the data needed in

administrative activities. This program is expected to eliminate most of the current

problems and to result in considerable savings of personnel power and time while

providing the required information to the command quickly.

After examining the current methods used to store and retrieve information in the

Turkish Navy frigates, requirements collection and analysis phase was performed to

determine the expected functionality of the POET database system. This is the most

important step of the entire database design process, because most subsequent design

decisions are based on this step.

211

The major tasks of this phase are to specify the data requirements and to determine the

functional requirements.

Once all the requirements have been collected and analyzed, a conceptual schema

was created for the database by using Semantic Object Modeling technique to capture the

user requirements. In order to build an effective database and related applications, a data

model that captures the users' perceptions closely is of great importance. The data model

should identify the entities and their attributes to be stored in the database and should

define their structure and the relationships among them.

After the data model is developed as semantic objects in the conceptual database

design phase, these objects were transformed into an implementation data model. In this

thesis, the relational model, which is the most common data model used in commercial

DBMSs, was used as the implementation data model. Then, the POET database was

implemented in Microsoft Access.

Java programming language and Java Database Connectivity (JDBC) application

program interface was used as a tool for developing an application program, which will

eliminate the need for a Database Management System environment.

Upon completion of the program and implementation, an evaluation and analysis

the possible benefits and advantages that would be gained by using POET system from

manpower, management, and technical perspectives was done.

It is hoped that this system, as an initial effort, will be the motivator for other

efforts to develop new systems and benefit other branches of the Turkish Navy and as an

inspiration to develop additional dedicated, focused systems.

212

B. FUTURE ENHANCEMENTS

The POET database system is developed in order to help a ship's personnel

perform the administrative activities by implementing a centralized database. The system

is designed as a single-ship system to be used on individual frigates. As a future

enhancement, it can be expanded and redesigned so that it can be employed in Destroyer

Division Commands and Fleet Command. In such a case, the personnel in Fleet

Command will be able to store and access the required information about all of the ships.

A program that will provide all message and report formats in a text editor

environment and that will produce the standard reports by integrating the format with the

data from POET database may be developed. Combining the capabilities of these two

programs, the command can save a lot of manpower by automating the report generation

process.

Another research area is to make the reports and messages produced by the POET

database system available in the military network. This facility will allow the ships to

electronically transfer their reports and messages to the higher command efficiently and

quickly while reducing the amount of paper work at the point of origin and receiving unit.

213

THIS PAGE INTENTIONALLY LEFT BLANK

214

APPENDIX A: SEMANTIC OBJECTS

SHIP

{D InternationalCallSign u

ShipName 1.1

HullNumber ^

ShipClass n

KeelLayingDate u

LaunchDate 1.1

CommissionDate 1.1

ShipLength 0.1

ShipWidth 01

MastHeight 0.1

KeelDepth 0.1

Displacement 0.1

HomePort 1t

SuperiorlnCommand n

Overhauls

]D OverhaulNumber 1.1

StartDate 1.1

EndDate 1.1

ShipyardName 11

OverhaulDuration 1.1
O.N

215

SHIP

PlannedManning

PlannedOfficers n

PlannedPettyOfficers 1.1

PlannedEnlisted 1.1

PresentManning

PresentOfficers 1.1

PresentPettyOfficers 1.1

PresentEnlisted 1.1

1.1

1.1

216

IB

DEPARTMENT

DepartmentName 1.1

nanneaivlanning

PlannedOfficers 1.1

PlannedPettyOfficers 1.1

PlannedEnlisted 1.1

1.1

KresentManntng

PresentOfficers 1.1

PresentPettyOfficers 1.1

PresentEnlisted 1.1

1.1

DIVISION
0 N

PERSONNEL
1 N

217

DIVISION

iß DivisionName n

PlannedManning

PlannedOfficers 1.1

PlannedPettyOfficers 1.1

PlannedEnlisted 1.1

1.1

PresentManning

PresentOfficers 1.1

PresentPettyOfficers 1.1

PresentEnlisted 1.1

1.1

DEPARTMENT

PERSONNEL

1.1

1.N

218

PERSONNEL

ID MiiitarylD 1.1

FirstName L-,

LastName ri

Rank n

Rating,.,

DateOfBirth n

PlaceOfBirth,.-,

FatherName 0.1

MotherName 01

ActiveDutyServiceDate 0.1

DateOfRank 0.1

Gender ri

MaritalStatus LI

SpouseName 0.1

NumberOfChildren 0.1

Address

Street 1.1

City 1.1

State 1.1

ZipCode 1.1

1.1

219

PERSONNEL

PhoneN umber 1.1

Speciality n

Education ri

CurrentAssignment ri

StartDate t1

CabinNumber!!

CabinPhone ri

rieviousAssignments

iß AssignmentNumber 1.1

Station 1.1

Position 1.1

Duration 1.1

O.N

Courses_Taken

IB TRAINING

StartDate 1.1

EndDate n

Grade 1.1

O.N

Cours es_To_Take

O.N

IB TRAINING

Foreign_Languages

ID Language n

Degree 1.1
0 N

220

TRAINING

IQ CourseName n

TrainingCenter 1.1

Duration 1.1

CourseDescription 0.1

PERSONNEL

PERSONNEL

O.N

O.N

221

EQUIPMENT

]D SerialNumber u

StockNumber ri

EquipmentName ri

EquipmentType ri

Manufacturer ri

Model!.-,

ProductionDate -,.-,

Location 0.1

Runtime V1

Failures —

Iß FailureNumber 1.1

Description 1.1

Diagnosis n

FailureDate 1.1

FailureDuration n

O.N

222

OPERATION

Iß ExerciseName n

ExerciseType ri

StartDate ri

EndDate u

Duration 1.1

Place Li

Events ~~

Iß EventName n

EventType -u

EventDuration 1.1

N um berOf Events 1.1

Port_Visits

IB PortName 1.1

VisitStartDate 1.1

VisitEndDate 1.1

VisitDuration 1.1

Underway_Durations

DaytimeHours n

NighttimeHours 1.1

1.N

O.N

1.1

223

OPERATION

Cost_Of_Exercise

FuelCost 1.1

AmmunitionCost 1.1

Amortization 1.1

CostOfExercise n

Helicopter —

ID HelotailNumber 1.1

FlyingDuration n

NumberOfDippings 1.1

DippingDuration 1.1

1.1

0.1

224

APPENDIX B: DOMAIN SPECIFICATIONS

SHIP OBJECT

Domain Name Type Semantic Description Physical Description

International

CallSign

Simple Attribute International Call Sign

of the Ship '

Text 4; Capital

Letters

ShipName Simple Attribute Name of the Ship Text 30

HullNumber Simple Attribute Hull Number of the

Ship

Text 4; One capital

letter and three digits

ShipClass Simple Attribute Class of the Ship Text 50

KeelLayingDate Simple Attribute Keel Laying Date Text 10; format

00/00/0000

LaunchDate Simple Attribute Launch Date Text 10; format

00/00/0000

CommisionDate Simple Attribute Commission Date Text 10; format

00/00/0000

Length Simple Attribute Length of the Ship in

Meters

Integer

Width Simple Attribute Width of the Ship in

Meters

Integer

MastHeight Simple Attribute Mast Height of the

Ship in Meters

Integer

KeelDepth Simple Attribute Keel Depth of the Ship

in Meters

Integer

Displacement Simple Attribute Displacement of the

Ship in Tons

Integer

HomePort Simple Attribute Home Port of the Ship Text 30

225

I Domain Name Type Semantic Description Physical Description

Superiorln Simple Attribute Immediate Superior In Text 50

Command Command

Overhauls Group Attribute Overhauls of the Ship OverhauINumber

StartDate

EndDate

ShipyardName

OverhaulDuration

OverhauINumber Simple Attribute Identifying Number

Given to each Overhaul

Byte

StartDate Simple Attribute Start Date of the Text 10; format

Overhaul 00/00/0000

EndDate Simple Attribute End Date of the Text 10; format

Overhaul 00/00/0000

ShipyardName Simple Attribute Shipyard Name Where

Overhaul Took Place

Text 50

OverhaulDuration Simple Attribute Overhaul Duration in

Days

Integer

PlannedManning Group Attribute Planned Manning of PlannedOfficers

the Ship PlannedPettyOfficers

PlannedEnlisted

PresentManning Group Attribute Present Manning of the PresentOfficers

Ship PresentPettyOfficers

PresentEnlisted

PlannedOfficers Simple Attribute Number of the Planned

Officers Onboard Ship

Integer

PlannedPetty Simple Attribute Number of the Planned Integer

Officers Petty Officers Onboard

Ship

226

Domain Name Type Semantic Description Physical Description

PlannedEnlisted Simple Attribute Number of the Planned

Enlisted Onboard Ship

Integer

PresentOfficers Simple Attribute Number of the Present

Officers Onboard Ship

Integer

PresentPetty

Officers

Simple Attribute Number of the Present

Petty Officers Onboard

Ship

Integer

PresentEnlisted Simple Attribute Number of the Present

Enlisted Onboard Ship

Integer

227

B. DEPARTMENT OBJECT

1 Domain Name Type Semantic Description Physical Description

DepartmentName Simple Attribute Name of a Department

Onboard Ship

Text 30

PlannedManning Group Attribute Planned Manning of PlannedOfficers

the Department PlannedPettyOfficers

PlannedEnlisted

PresentManning Group Attribute Present Manning of the PresentOfficers

Department PresentPettyOfficers

PresentEnlisted

PlannedOfficers Simple Attribute Number of the Planned

Officers in Department

Integer

PlannedPetty Simple Attribute Number of the Planned Integer

Officers Petty Officers in

Department

PlannedEnlisted Simple Attribute Number of the Planned

Enlisted in Department

Integer

PresentOfficers Simple Attribute Number of the Present

Officers in Department

Integer

PresentPetty Simple Attribute Number of the Present Integer

Officers Petty Officers in

Department

PresentEnlisted Simple Attribute Number of the Present

Enlisted in Department

Integer

PERSONNEL Semantic Object Personnel Assigned to PERSONNEL Object

Attribute Department

DIVISION Semantic Object Divisions within the DIVISION Object

Attribute Department

228

C. DIVISION OBJECT

Domain Name Type Semantic Description Physical Description

DivisionName Simple Attribute Name of a Division

Within a Department

Text 30

PlannedManning Group Attribute Planned Manning of

the Division

PlannedOfficers

PlannedPettyOfficers

PlannedEnlisted

PresentManning Group Attribute Present Manning of the

Division

PresentOfficers

PresentPettyOfficers

PresentEnlisted

PlannedOfficers Simple Attribute Number of the Planned

Officers in Division

Integer

PlannedPetty

Officers

Simple Attribute Number of the Planned

Petty Officers in

Division

Integer

PlannedEnlisted Simple Attribute Number of the Planned

Enlisted in Division

Integer

PresentOfficers Simple Attribute Number of the Present

Officers in Division

Integer

PresentPetty

Officers

Simple Attribute Number of the Present

Petty Officers in

Division

Integer

PresentEnlisted Simple Attribute Number of the Present

Enlisted in Division

Integer

PERSONNEL Semantic Object

Attribute

Personnel Assigned to

Division

PERSONNEL Object

DEPARTMENT Semantic Object

Attribute

Department to which

Division Belongs

DEPARTMENT

Object

229

D. PERSONNEL OBJECT

1 Domain Name Type Semantic Description Physical Description

Military© Simple Attribute Military Identification

Number of Personnel

Text 10

Name Group Attribute First and Last Names FirstName

of Personnel LastName

FirstName Simple Attribute First Name of the

Personnel

Text 30

LastName Simple Attribute Last Name of the

Personnel

Text 30

Rank Simple Attribute Rank of the Personnel Text 50

Rating Simple Attribute Rating of the Personnel Text 50; values

{Officer, Petty

Officer, Enlisted}

DateOfBirth " Simple Attribute Birth Date of Personnel Text 10; format

00/00/0000

PlaceOfBirth Simple Attribute Place of Birth of

Personnel

Text 30

FatherName Simple Attribute Father's Name of

Personnel

Text 30

MotherName Simple Attribute Mother's Name of

Personnel

Text 30

ActiveDuty Simple Attribute Active Duty Service Text 10; format

ServiceDate Date of Personnel 00/00/0000

DateOfRank Simple Attribute Date of Rank of Text 10; format

Personnel 00/00/0000

Gender Simple Attribute Gender of Personnel Text 20; values {Male,

Female}

230

Domain Name Type Semantic Description Physical Description

Mari tal Status Simple Attribute Marital Status of Text 50; values

Personnel {Married, Single}

SpouseName Simple Attribute Spouse's Name f

Personnel

Text 30

NumberOf Simple Attribute Number of Children of Byte

Children Personnel

Address Group Attribute Home Address of Street

Personnel City

State

ZipCode

Street Simple Attribute Street Address of

Personnel

Text 50

City Simple Attribute City where Personnel

Lives

Text 30

State Simple Attribute State where Personnel

Lives

Text 30

ZipCode Simple Attribute Zip Code of the Text 10; format

Personnel's Address 00000-9999

PhoneNumber Simple Attribute Phone Number of Text 15; format

Personnel's House (000) 000-0000

Specialty Simple Attribute Specialty of Personnel Text 50

Education Simple Attribute Education of Personnel Text 30

Current Simple Attribute Current Assignment of Text 100

Assignment Personnel

StartDate Simple Attribute Start Date of Current Text 10; format

Assignment 00/00/0000

CabinNumber Simple Attribute Cabin Number of

Personnel

Text 10

231

I Domain Name Type Semantic Description Physical Description

CabinPhone Simple Attribute Cabin Phone of

Personnel

Integer; format 000

CoursesToTake Group Attribute Military Courses that TRAINING Object

Personnel should take

TRAINING Semantic Object

Attribute

Military Course TRAINING Object

Previous Group Attribute Previous Assignments Assignment Number

Assignments of Personnel Station

Position

Duration

Assignment Simple Attribute Identifying Number of Byte

Number Assignment

Station Simple Attribute Station Name of the

Previous Assignment

Text 50

Position Simple Attribute Position Name of the

Previous Assignment

Text 50

Duration Simple Attribute Duration of Previous

Assignment in Years

Byte

Foreign Group Attribute Foreign Languages Language

Languages Known by Personnel Degree

Language Simple Attribute Name of the Foreign

Language

Text 30

Degree Simple Attribute Degree of the Foreign Text 1; values {A, B,

Language C,D,F}

CoursesTaken Group Attribute Military Courses that TRAINING Object

Personnel has taken StartDate

EndDate

Grade

232

Domain Name Type Semantic Description Physical Description

StartDate Simple Attribute Start Date of Course Text 10; format

00/00/0000

EndDate Simple Attribute End Date of Course Text 10; format

00/00/0000

Grade Simple Attribute Course Grade Byte; values {0 to

100}

DIVISION Semantic Object Division for which DIVISION Object

Attribute Personnel works

DEPARTMENT Semantic Object Department for which DEPARTMENT

Attribute Personnel works Object

233

E. TRAINING OBJECT

Domain Name Type Semantic Description Physical Description

CourseName Simple Attribute Name of the Military

Course

Text 50

TrainingCenter Simple Attribute Training Center where

Course is given

Text 50

Duration Simple Attribute Course Duration in

Weeks

Byte

Course Simple Attribute Brief Description of Text 200

Description Course

PERSONNEL Semantic Object Personnel who should PERSONNEL Object

Attribute take the Course

PERSONNEL Semantic Object Personnel who has PERSONNEL Object

Attribute taken the Course

234

F. EQUIPMENT OBJECT

Domain Name Type Semantic Description Physical Description

SerialNumber Simple Attribute Serial Number of

Equipment

Text 20

StockNumber Simple Attribute Stock Number of

Equipment

Text 20

EquipmentName Simple Attribute Equipment Name Text 50

EquipmentType Simple Attribute Equipment Type Text 50

Manufacturer Simple Attribute Manufacturer Name Text 30

Model Simple Attribute Equipment Model Text 30

ProductionDate Simple Attribute Production Date of Text 10; format

Equipment 00/00/0000

Location Simple Attribute Location of Equipment Text 10

Runtime Simple Attribute Run Time of

Equipment in Hours

Long Integer

Failures Group Attribute Failures of Equipment Failure Number

Description

Diagnosis

Failure Date

Failure Duration

Failure Number Simple Attribute Identifying Number of

Failure

Byte

Description Simple Attribute Failure Description Text 100

Diagnosis Simple Attribute Diagnosis of Failure Text 100

FailureDate Simple Attribute Failure Date Text 10; format

00/00/0000

FailureDuration Simple Attribute Failure Duration in

Hours

Byte

235

G. OPERATION OBJECT

1 Domain Name Type Semantic Description Physical Description

ExerciseName Simple Attribute Name of Exercise Text 30

ExerciseType Simple Attribute Type of Exercise Text 50

StartDate Simple Attribute Start Date of Exercise Text 10; format

00/00/0000

EndDate Simple Attribute End Date of Exercise Text 10; format

00/00/0000

Duration Simple Attribute Duration of Exercise in Byte

Days

Place Simple Attribute Name of the Seas that

Exercise took place

Text 100

Events Group Attribute Events Executed during EventName

Exercise EventType

EventDuration

NumberOfEvents

EventName Simple Attribute Name of Event Text 50

EventType Simple Attribute Type of Event Text 30

NumberOfEvents Simple Attribute NumberofEvents Byte

EventDuration Simple Attribute Total Duration of Event

in Hours

Integer

236

Domain Name Type Semantic Description Physical Description

PortVisits Group Attribute Ports Visited during

Exercise

PortName

VisitStartDate

VisitEndDate

VisitDuration

PortName Simple Attribute Name of Port Text 50

VisitStartDate Simple Attribute Start Date of Port Visit Text 10; format

00/00/0000

VisitEndDate Simple Attribute End Date of Port Visit Text 10; format

00/00/0000

VisitDuration Simple Attribute Duration of Port Visit

in Days

Byte

Underway

Durations

Group Attribute Underway Duration of

Exercise in Hours

DaytimeHours

NightTimeHours

DaytimeHours Simple Attribute Daytime Underway

Hours

Integer

NighttimeHours Simple Attribute Nighttime Underway

Hours

Integer

CostOfExercise Group Attribute Cost of Exercise FuelCost

AmmunitionCost

Amortization

FuelCost Simple Attribute Cost of Fuel Consumed Double

AmmunitionCost Simple Attribute Cost of Ammunition Double

Amortization Simple Attribute Amortization Cost Double

CostOfExercise Simple Attribute CostOfExercise Double

237

Domain Name Type Semantic Description Physical Description

Helicopter Group Attribute Helicopter Stationed HeloTailNumber

Onboard during the FlyingDuration

Exercise NumberOfDippings

DippingDuration

HeloTailNumber Simple Attribute Tail Number of

Helicopter

Text 10

FlyingDuration Simple Attribute Flying Duration of

Helicopter in Hours

Integer

NumberOf Simple Attribute Number of Dippings Byte

Dippings that Helicopter made

DippingDuration Simple Attribute Dipping Duration of Integer

Helicopter in Hours

238

APPENDIX C: RELATIONAL TABLES

SHIP (InternationalCallSigEu ShipName, HullNumber, ShipClass, KeelLayingDate,

LaunchDate, CommissionDate, Length, Width, MastHeight, KeelDepth,

Displacement, Homeport, SuperiorlnCommand, PlannedOfficers,

PlannedPettyOfficers, PlannedEnlisted, PresentOfficers, PresentPettyOfficers,

PresentEnlisted)

OVERHAULS (InternationalCallSign, OverhaulNumber, StartDate, EndDate,

OverhaulDuration, ShipyardName)

PERSONNEL (MilitarylD, FirstName, LastName, DepartmentName, DivisionName,

Rank, Rating, DateOfBirth, PlaceOfBirth, FatherName, MotherName,

ActiveDutyServiceDate, DateOfRank, Gender, MaritalStatus,

SpouseName, NumberOfChildren, Street, City, State, ZipCode,

PhoneNumber, Speciality, Education, CurrentAssignment, StartDate,

CabinNumber, CabinPhone)

COURSES_TO_TAKE (MilitarylD, CourseName)

COURSESJTAKEN (MilitarylD, CourseName, StartDate, EndDate, Grade)

ASSIGNMENTS (MilitarylD, AssignmentNumber, Station, Position, Duration)

239

FOREIGNLANGUAGES (MilitarvID. Language. Degree)

DEPARTMENT (DepartmentName. PlannedOfficers, PlannedPettyOfficers,

PlannedEnlisted, PresentOfficers, PresentPettyOfficers,

PresentEnlisted)

DIVISION (DivisionName. DepartmentName, PlannedOfficers, PlannedPettyOfficers,

PlannedEnlisted, PresentOfficers, PresentPettyOfficers, PresentEnlisted)

TRAINING (CourseName. TrainingCenter, CourseDuration, CourseDescription)

OPERATION (ExerciseName. ExerciseType, StartDate, EndDate, Duration, Place,

DaytimeUnderwayHours, NighttimeUnderwayHours, HeloTailNumber,

FlyingDuration, NumberOfDippings, DippingDuration, FuelCost,

AmmunitionCost, Amortization, CostOfExercise)

EVENTS (ExerciseName. EventName. EventType, NumberOfEvents, EventDuration)

PORT_VISITS (ExerciseName. PortName. VisitStartDate, VisitEndDate,

VisitDuration)

240

EQUIPMENT (SerialNumber, StockNumber, EquipmentName, EqulpmentType,

ProductionDate, Manufacturer, Model, Location, Runtime)

FAILURES (SerialNumber, FaiiureNumber, FailureDescription, FailureDiagnosis,

FailureDate, FailureDuration)

241

THIS PAGE INTENTIONALLY LEFT BLANK

242

APPENDIX D: RELATIONSHIP DIAGRAM

«s, Microsoft Access - [Relationships!

NsSfe £& »«« ad**«!** loob äfindow B* Mi
PÄBisa^U'ssa: T3J 8°^|x ein©

IntemabonaiCa
ShipName
HuJNumber
ShipClass
KeelayingDate y{

InternaöonalCal*
Overhai*Jurrte

StartDate
EndDate
OverhaulDuratio jr\

IDmaonName
Departments
PlannedOfficerjS

PlannedPettyC £•
PlannedEnfist&SJ

S^lfP^
DepartmertNaB^
PlannedOfficers
PlannedPettyOf
PlannedEnlisted-"?:
Preser*Offkersj|j

ssaggs- -'
MtaryB) 1 FirstName
LastName
DepartmentName i~.
DivisionName
Rank a

ExeniseName
PortName
VisitStartDate
VisitEndDate

: VisitDuration

1 ExeräseNane
ExerciseType
StartDate !;..j;
EndDate ;Jpj
Duration SJf

ExeraseName
EveritName
EventType
NumberOfEvents
EventDuration

1
mi.

GxrseName
TrainingCenter
CourseDuration
CourseDescriptioc

3M0Wfilggg|

SeriaNumberj*
StockNumber ||
EquipmentNarifi
EquipmentTyp %
ProductionDat<r|

7

ffteadjE'

SeriaNianber j£
FalureNwfaerf;
FalureDescript
FaiureDiagnos--^
FahjreDate J||

"püSTf
^

243

THIS PAGE INTENTIONALLY LEFT BLANK

244

APPENDIX E: APPLICATION PROGRAM SCREEN SHOTS

A. CONNECTION PANEL

UPOET DATABASE CONNECTION

^0;i USER NAME Yuksel

Start Cancer

B. MENUS / BUTTONS

^POET

Fife Help

HHE3I

POET DATABASE APPLICATION

I START EXIT

245

El POET

Hte Help
IBEI

s*Rrf^S^I^SA'i^i;-;i:s^^sasiSS

TABtES REPORTS

^amwms »UPOAIEMRtJS

QUERES •iBflfe

246

Ippo^ Bis! ES
Fite He*

PERSONNEL TABLE OPERATION TABLE

EQUIPMENT TABLE TRAINING TABLE

DEPARTMENTTABLE DMSJON TABLE

■"

RETURN TO MAM MENU

247

Eg POET

Help

DIVISION REPORT

TRAB»« REPORT

OVERHAUL REPORT

ASSIGNMENT REPORT

LANGUAGE REPORT EVENT REPORT

PORT VIST REPORT FALUREREPORT

RETURN TO MAN MENU

248

IÜPÖET HEB
Fie Help

PERSONNEL «PUT FORM OPERATION «PUT FORM

EQUIPMENT «PUT FORM TRANWG «PUT FORM

OVERHAUL «PUT FORM COURSE-TO-TAKE «PUT FO-

COURSE-TAKEN «PUT FORM ASSIGNMENT «PUT FORM

LANGUAGE «PUT FORM EVENT «PUT FORM

PORT VIST «PUT FORM FAILURE «PUT FORM

RETURN TO MAM MENU -

249

KaPOET

Fie Help
BSE

PERSONNEL UPDATE FORM OPERATION UPDATE FORM

EQUPMENT UPDATE FORM TRABflNG UPDATE FORM

OVERHAUL UPDATE FORM COURSE-TO-TAKE UPDATE .

COURSE-TAKEN UPDATE FO_ ASSIGNMENT UPDATE FORM

LANGUAGEUPDATEFORM EVENTUPDATEFORM

PORT VISIT UPDATE FORM FAILURE UPDATE FORM

RETURN TO MAM MENU

250

I^POET wmmm-\°M
File Help

COURSE-TO-TAKE QUERY

,
COURSE-TAKEN QUERY

ASSIGNMENT QUERY LANGUAGE QUERY

EVENT QUERY PORT WStT QUERY

FALURE QUERY NEW QUERY

1 RETURN TO MAW MENU

i

i
i
i

_J

251

C. TABLES

Es PERSONNEL TABLE BEE
Int erCeM Spacing zMz Row Height

i FiretName I LastName ;| .'■ DepattmeffiNaroe 'Oiwsionrjä'm&' Rank
19937025

19947280

19947358

19915179

19804G29

19804288

19742550

19762966

19783055

Rating

19793123

19823562

19833698

19833602

19854023

19988908

Unal

(Yuksel

i Ozcan

Tarkan

Recep"

Mehmet

Lutfi

Mucahit

Selahattin

(Ismet

jKemal

'Yucel

(Bulent

iAydin

Ahmet

?Aktas: (

(Can

:Altunbulak

; Gurul

(Gul

Kahraman

Yavuz

Sislioglu

Deniz

!Hergunsen

iEvcioglu

[Atalay

lOlcay

lYilmaz

Cankurt

(Operations

[Operations

: Weapons

■ Weapons

I Operations

! Operations

Navigation

Navigation

Engineering

Operations

Weapons

Electronics

Navigation

Supply

Engineering

CIC

I Communications

Anti Air Warfare

i Antisubmarine Warfare

Communications

:CIC

Administration

Administration

:Main Propulsion

(cic

: Anti Surface Warfare

Weapons Electronics

! Navigation

; Supply

Electrical

ILTJG

JLTJO

(LTJG

J SENIOR CHIEF PETTY OFFICER

; SENIOR CHIEF PETTY OFFICER

(COMMANDER

(COMMANDER

iLTCDR

ILTCDR

| LIEUTENANT

LIEUTENANT

LIEUTENANT

LIEUTENANT

OFFICER

| OFFICER

: OFFICER

(OFFICER

PETTY OFFICER

PETTY OFFICER

OFFICER

(OFFICER

I OFFICER

; OFFICER

(OFFICER

(OFFICER

I OFFICER

(OFFICER

ENLISTED

252

^OPERATION TABLE HE £3
InterCeH Spacing Row Height = =£1=

Exereisetenie : E-xerciseType:: StärtDate-; lEmiDate Duration U%ce '

DYNAMICM1X-93 iFLEETEXERCISE :10/05/1993 Iiat22i1993

SEAWORM-94 FLEET EXERCISE : 06/02/1994 §06/30/1994

FRIENDSHIP-97 SQUADRON EXERCISE <04/12/1997 ^04/26/1997

SEAWORM-96 FLEET EXERCISE ' 06/10/1996 :07/09/1996

DISTANT THUN... FLEET EXERCISE 04/12/1998 04/28/1998

SEASTAR-95 SQUADRON EXERCISE 09/06/1995 09/24/1995

:17lMedferra«ean Sea. Aegean Sea ::

28' Mediterranean Sea, Aegean Sea, Marmara Sea

141 Black Sea, Marmara Sea

29 Mediterranean Sea, Aegean Sea, Marmara Sea

16Aegean Sea, Mediterranean Sea

18 Black Sea. Marmara Sea

253

1 EQUIPMENT TABLE HEE
imer-Cell Spacma F Row Height

SerialNurober j (aockNumoer lEqüipmentNamel EquiproentTVpe -I BrodoctionBate 1 iMinufacger:! (Model/ 1: Location i Runtime~

i254698210\.ii00-42f4125\/WSQS-56: '.'JfON^v^^

4526947822 1004567106 'OECCA

1599630457 -2008521138 JHF-1

4522106897 2005691255 jUHF-3

8652496520 3001447845 GPS '

(RADAR j 02/15/1993 (Decca JTN2001 |03D8

|COMMUNICATI... j 10/18/1996 (Marconi (HF7003 |02H4

| COMMUNICAT!... 112/05/1992 j Marconi JSS12 J02H4

(NAVIGATION : 03/14/1992 iMagnavox (MT 900 !03D5

19,852

5,623

14,200

18,610

254

Kg TRAINING TABLE MM
Inter-Cell Spacing <==^= Row Height

CourseName TrainlnsCenter CourseDuratiori' ^CoürseDescriptiorK

Communications KARAMURSEL TRAINING CENTER

CIC

Wepaons

Operations Electronics

Weapons Electronics

Helicopter Controller

Commanding Officer

Executive Officer

ChiefEngineer

(KARAMURSEL TRAINING CENTER

[KARAMURSEL TRAINING CENTER

j DERINCE TRAINING CENTER

j DERINCE TRAINING CENTER

; YILDIZLAR TRAINING CENTER

| YILDIZLAR TRAINING CENTER

i YILDIZLAR TRAINING CENTER

DERINCE TRAINING CENTER

8: Communications Course prepares the he...

8| CIC Course gives the necessary backgrou...

6\ Weapons Course educates the Wepons Of..

32a Operations Electronics Course trains the 0..

32s Wepaons Electronics Course trains the Off.,.

4[Helicopter Controller Course prepares the ...

41 Commanding Officer Course educates the ...

4I Executive Officer Course educates the Exe...

6 ChiefEngineer Course educates the Chief...

255

D. REPORTS

HjgDtVISION REPORT HBE3
DEPARTMENT DIVISION OFFICERS PETTY OFFICERS ENLISTED

Operations CIC 2 6 4 |

Communications 1 8 0 !

Electronic Warfare 1 3 2 !

Engineering: Main Propulsion 2 8 6 !

Electrical 1 6 5

Damage Control 1 4 5 1

Weapons Anti Surface Warfare 1 2 3

Ami Submarine Warfare 1 3 3

And Air Warfare 1 3 3 i
Eire Control 1 2 1

Electronics Weapons Electronics 2 10
4 1

CIC Electronics 1 5
(

2 i

Communications Electronics 1 4 0 ';

Navigation Administration 2 1 3

Navigation 1 4 5

Beck 0 3 6

256

|{ÜTRAINING REFORT ■ -lalx<

FIRST NAME LAST NAME COURSE NAME GRADE

Unal Aktas cic 99

Ynksel Can Communications 97

Lntfi Yavtn Communications 92

CIC 90

Mucahit SisKoghi Weapons Electronics 97

Selaltattin Denk Chief Engineer 94

Ismet Hergansen Helicopter Controller 85

Kemal Evciogjbu Wepaons 89

257

^ASSIGNMENT REPORT

BIRST NAME
»HE

LAST NAME STATION

Yuksel

Lntfi

Mocahit

Selafaattin

Can

Yavnz

Sislioghi

Dens

ICGYILDIRIM

ICGSÄVASTEEE

TCGMÜAVENET

TTJN Headquarters

TCGKARAYEL

ICG URTINA

NATO Headquarters

TCG MARTI

TCGKARTAL

TCHFATIH

POSITION

Communications Officer

Communications Officer

CIC Officer

Operations Officer

Kre Control Officer

XO

Intelligence Officer

Electrical Officer

Damage Control Officer

Mam Propulsion Officer

258

{SLANGUAGE REPORT HEE3|

FIRST NAME LAST NAME LANGUAGE DEGREE

Una! Aktas English B

Yuksel Caa English A

Gennan B

Lntfi Yavuz English B

French A

Mocafaxt Sislioghi English A

Selahattin Denk English C

Rental Evcioghi Gexman A

Yoeel Atalay English C

Genuan B

Bulent Okay English A

259

I^EXEROSE/EVENT REPORT M-in|x|
EXERCISE NAME EVENT NAME EVENT TXPE DÜRATION(H©UK)

3 j

j DYNAMIC MJX-93 SURFEX-310 ANTISURFACE WARFARE 14 j

CASEXA-5 ANTISUBMARINE WARFARE 18 |

1

CASEXC-5 ANTISUBMARINE WARFARE 15

j SEAWORM-94 SURFEX-310 ANTISURFACE WARFARE 22

SURFEX-316 ANTISURFACE WARFARE 11

CASES C-5 ANTISIJBMARINE WARFARE 19

EWX-320 ANTIAIR WARFARE 10

NAVCOMEX-408 COMMUNICATIONS 5
j
1 f NAVCOMEX-605 COMMUNICATIONS

1
4

FRJENDSHIP-97 PASSEX-120 MISCELLANEOUS 12

SEAWORM-96 SURFEX-410 ANTISIJRFACE WARFARE 21

CASEXA-5 ANTISUBMARINE WARFARE 15

NAVCOMEX-405 COMMUOTCATIONS 6

MAVCOMEX-605 COMMUNICATIONS 5

EWX-231 ELECTRONIC WARFARE 12

j DISTANT THUNDER-98 SURFEX-310 ANTISURFACE WARFARE
8

260

llgsPORT VISIT REPORT HHE3I

EXERCISE NAME PORTNAME START »ATE END DATE

DYNAMIC MIX-!» NAPOLI 10/10/1993 10030993

SEAWORM-94 IZMIR 06/100994 06/13/1994

ANTALYA 05/18/1994 06/200994

MERSIN 06/23/1994 06/24/1994

EREENDSHIP-97 VARNA 04/160997 04/180997

SEAWORM-96 CANAKKALE 06/09/1996 06010996

MARMARIS 06/15/1996 06080996 1

ANTALYA 06/22/1996 06/23O996

DISTANT THUNDER-98 IZMIR 04/160998 04080998

'

ISTANBUL 04/22/1998 04/23O998
j
t

1
I

j
t
1

j

j
i

261

IgäEQUlPMENT FAILURE REPORT HEQ1
EQUIPMENT NAME EQUIPMENT TYPE FAILURE DURAHON(Hours)

AN/SQS-56 SONAR Stop Transmission 72

No Signal Reception 95

DECCA RADAR No Display 14

Not Running 19

Incorrect Target Display 9

HF-1 COMMTJTOCATIONS No Transmisson 12

TJHF-3 COMMÜMCATIONS No Reception 45

Not Running 10

262

ES OVERHAUL REPORT

OVERHA1T, START DATE END DATE

1 04/20/1992 07/20/1992

2 08/12/1994 12/12/1994

3 05/1SO996 11/15/1996

4 03/01/1998 05/01/1998

SHIPYARD

GOLCUK NAVAL SHIPYARD

GOLCUK NAVAL SHIPYARD

GOLCUK NAVAL SHIPYARD

GOLCUK NAVAL SHIPYARD

263

E. FORMS

PERSONNEL FORM
Military ID:

First Name:
Last Name:

Department:
Division:

Rank:

Rating:

DateOfBirth:

«ace Of Birth:

Father's Name:

Mother's Name:

Active Duty Service Date:
Date Of Rank:

Gender:

Marital Status:

Spouse's Name:
Number Of Children:

Street:

City:
State:
Zip Code:

Phone Number:
Speciality:

Education:
Current Assignment:
Start Date:
Cabin Number:
Cabin Phone:

HEß
H9947280
lYuksel
Can
Operations

Communications

LTJG
OFFICER
03/05/1972

Kastamonu

Ismail

Ayse

08/30/1994

08/30/1997

MALE
MARRIED

Sibel

California

93940-4830
(831)372-4408

CompulerScience
MASTER

COMMUNICATIONS OFFICER
09/30/1994

J
2K11

J244

»SO RiCORD DELETE RECORD UPDATE RECORD CANCEL

264

KOOPERATION FORM B-lnixf

Exercise Name:

Exercise Type:

Start Date:

End Date:

Duration (Days):

«ace (SeaiOcean):

DISTANT THUNDER-98 :

FLEET EXERCISE •v

04/12/1998

04/28/1998

16
■xz,-:,:x.,zzxz!zxx::;.sx!

Aegean Sea, Mediterranean Sea

Daytime Underway Hours: 360

Nighttime Underway Hours: 314

Heto Tail Number: H45

Heto Bymg Time (Hours): 142

Number Of Dippings:

Total Dipping Time (Hours):

8

f35 1

Fuel Cost: 180000.0

Ammunition Cost: 200000.0

Amortization:

Cost Of Exercise:

220000.0

600000.0

: ADO RrCOFS : DELETE RECORD l||'TäÜäM>ATCRECÄ; '(, CANCEL"/-] i

265

^EQUIPMENT FORM USES

Serial Number: 1254698210

Stock Number:

Equipment Name:

Equipment Type:

Production Date:

Manufacturer:

Equipment Model:

Equipment Location:

Equipment Runtime (Hours):

100-425-4125

AN/SQS-56

COMMUNICATIONS

10/12/1992

Signaal

SQS-56

5C03

17536

: ADOSzCORD j DELETE RECORD ! UPDATE RECORD jj CANCEL

266

APPENDIX F: APPLICATION PROGRAM CODE

//
// File :
// Author :
// Date :
// Description
//
//
//
//
//
//
//
// Compiler :
// Comments :
//
//

POETApplication.j ava
LTJG. Yuksel CAN
June 22, 1999
POETApplication class provides a database frontend
application with a graphical user interface to
access a Microsoft Access database called POET.mdb
that stores and manipulates personnel, operation,
equipment, and training information about a ship.
The application program uses the JDBC-ODBC Bridge
for connecting to the database and swing objects
and methods for graphical user interface.
JDK 1.2.1
POETApplication program can be run as an application
or as an applet.

import j ava.awt.*;
import j ava.awt.event.*;
import java.sql.*;
import java.util.*;
import javax.swing.*;
import javax.swing.event.v

import javax.swing.border.

*
*
*

The POETApplication class implements a database frontend
application to access a Microsoft Access database that stores
and manipulates personnel, operation, equipment, and training
information about a ship. The application program uses the
JDBC-ODBC Bridge for connecting to the database and swing objects
and methods for graphical user interface.

@author LTJG. Yuksel Can
'/

public class POETApplication extends JApplet {

// Menu Bar
JMenuBar menuBar;

// Menus
JMenu fileMenu;
JMenu helpMenu;

// CardLayout panels
static JPanel deck;
static JPanel welcome;

267

static JPanel mainMenu;
static JPanel tableMenu;
static JPanel inputFormMenu;
static JPanel updateFormMenu;
static JPanel reportMenu;
static JPanel queryMenu;

//CardLayout Manager
static CardLayout cardManager;

// Menu Items
JMenuItem exit;
JMenuItem contents;
JMenuItem about;

// Main
JButton
JButton
JButton
JButton
JButton
JButton

Menu Buttons
tableButton;
inputButton;
updateButton;
reportButton;
queryButton;
stopButton;

// Table Menu Buttons
JButton personnelTable;
JButton operationTable;
JButton equipmentTable;
JButton trainingTable;
JButton departmentTable;
JButton divisionTable;
JButton mainMenuTable;

// Input Form Menu Buttons
JButton personnelInputForm;
JButton operationlnputForm;
JButton equipmentlnputForm;
JButton traininglnputForm;
JButton overhaulInputForm;
JButton courseToTakelnputForm;
JButton courseTakenlnputForm;
JButton assignmentInputForm;
JButton languagelnputForm;
JButton eventInputForm;
JButton visitlnputForm;
JButton failurelnputForm;
JButton mairiMenuInputForm;

// Output Form Menu Buttons
JButton personnelUpdateForm;
JButton operationUpdateForm;
JButton equipmentUpdateForm;
JButton trainingUpdateForm;
JButton overhaulUpdateForm;
JButton courseToTakeüpdateForm;

268

JButton courseTakenUpdateForm;
JButton assignmentUpdateForm;
JButton languageUpdateForm;
JButton eventUpdateForm;
JButton visitUpdateForm;
JButton failureUpdateForm;
JButton mainMenuUpdateForm;

// Report Menu Buttons
JButton divisionReport;
JButton overhaulReport;
JButton trainingReport;
JButton assignmentReport;
JButton languageReport;
JButton eventReport;
JButton visitReport;
JButton failureReport;
JButton mainMenuReport;

// Query Menu Buttons
JButton courseToTakeQuery;
JButton courseTakenQuery;
JButton assignmentQuery;
JButton languageQuery;
JButton eventQuery;
JButton visitQuery;
JButton failureQuery;
JButton newQuery;
JButton mainMenuQuery;

// Connection Panel object
static ConnectionPanel connectionPanel;

// String array for connectionPanel dialog box
static String[] connectOptionNames = { "Start", "Cancel" };

// Query Window Components
JPanel queryPanel;
JPanel leftPanel;
JFrame queryFrame;
JButton fetchButton;
JLabel selectLabel;
JLabel fromLabel;
JLabel whereLabel;
JLabel groupLabel;
JLabel havingLabel;
JLabel orderLabel;
JTextArea selectArea;
JTextArea fromArea;
JTextArea whereArea;
JTextArea groupArea;
JTextArea havingArea;
JTextArea orderArea;
JComponent queryAggregate;

269

JScrollPane tableAggregate;

// Static fonts and colors
static Font labelFont;
static Font textFont;
static Font headerFont;

static Color labelColor;
static Color areaColor;
static Color panelColor;
static Color buttonColor;

// Table Model object
JDBCAdapter dataBase;

// JFrame object
static JFrame frame;

* Method main initializes the frame for the GUI.
* @param args command line arguments
* Sreturn void
*/

public static void main(String[] args) {

labelFont = new Font("Serif", Font.BOLD, 18);
textFont = new Font("Serif", Font.BOLD, 16);
headerFont = new Font("Arial", Font.BOLD, 44);

labelColor = new Color(170, 200, 170);
areaColor = new Color(233, 229, 185);
panelColor = new Color(197, 216, 234);
buttonColor = new Color(160, 220, 245);

frame = new JFrame("POET") ;

// Handle the window closing event
frame.addWindowListener(new WindowAdapter()
{

public void windowClosing(WindowEvent e)
{

System.exit(0);
}

});

// Set Metal Look and Feel
String metalClassName =

"j avax.swing.plaf.metal.MetalLookAndFeel";

270

try {
UIManager.setLookAndFeel(metalClassName);.
SwingUtilities.updateComponentTreeUI(frame);

frame.pack() ;
}

catch (Exception e) {
JOptionPane.showMessageDialog(null, "ERROR",

"Metal Look And Feel could not be loaded",
JOptionPane.ERROR_MESSAGE) ;

}

POETApplication poetApplication = new POETApplication{);

connectionPanel = new ConnectionPanel();

if (JOptionPane.showOptionDialog(null,
connectionPanel, "POET DATABASE CONNECTION",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.INFORMATION_MESSAGE,
null, connectOptionNames,
connectOptionNames[0]) == 0) {

deck = new JPänel();
cardManager = new CardLayout();
deck.setLayout(cardManager);

frame.getContentPane().add(poetApplication);

poetApplication.init();

poetApplication.start();

// Add panel deck to the applet
poetApplication.getContentPaneO.add(deck);

frame.setSize(800, 600);

frame.setVisible(true) ;

} // end if

} // end main()

/**
* Method init initializes the GUI components and registers
* event listeners for the menu items.
* @param args command line arguments
* Sreturn void
.*/

271

public void init() {

// Initialize the menus
fileMenu = new JMenu("File");
helpMenu = new JMenu("Help");

// Initialize the menu items
exit = new JMenuItem("Exit");
about = new JMenuItem("About");
contents = new JMenuItem("Contents");

// Initialize the welcome panel and its components
welcome = new JPanel();
welcome.setLayout(null) ;
welcome.setSize(800, 600);
welcome.setBackground(panelColor) ;

String filename = "images/meko.jpg";
Imagelcon image = new Imagelcon(filename);
JLabel shipLabel = new JLabel(image);
shipLabel.setSize(800, 300);
shipLabel.setLocation(0, 0);

JLabel header = new JLabel("POET DATABASE APPLICATION",
JLabel.CENTER);

header.setForeground(Color.blue);
header.setFont(headerFont);
header.setSize(800, 200);
header.setLocation(0, 300);

JButton startButton = new JButton("START");
startButton.setBackground(panelColor);
startButton.setForeground(Color.blue);
startButton.setSize(100, 50);
startButton.setLocation(250, 475);

JButton exitButton = new JButton("EXIT");
exitButton.setBackground(panelColor);
exitButton.setForeground(Color.blue);
exitButton.setSize(100, 50);
exitButton.setLocation(450, 475);

welcome.add(shipLabel);
welcome.add(header);
welcome.add(startButton);
welcome.add(exitButton);

deck.add(welcome, "welcome");

// Initialize the main menu and its components
mainMenu = new JPanel();
mainMenu.setLayout(null);
mainMenu.setSize(800, 600);
mainMenu.setBackground(panelColor);

272

String filenamel = "images/mekol.jpg";
Imagelcon imagel = new Imagelcon(filenamel)
JLabel shipLabell = new JLabel(imagel);
shipLabell.setSize(800, 350);
shipLabell.setLocation(0, 0);

tableButton = new JButton("TABLES");
tableButton.setBackground(panelColor);
tableButton.setForeground(Color.blue) ;
tableButton.setSize(150, 50);
tableButton.setLocation(150, 350) ;

inputButton = new JButton("INPUT FORMS");
inputButton.setBackground(panelColor);
inputButton.setForeground(Color.blue);
inputButton.setSize(150, 50);
inputButton.setLocation(150, 420);

updateButton = new JButton("UPDATE FORMS");
updateButton.setBackground(panelColor) ;
updateButton.setForeground(Color.blue);
updateButton.setSize(150, 50);
updateButton.setLocation(450, 420) ;

reportButton = new JButton("REPORTS") ;
reportButton.setBackground(panelColor) ;
reportButton.setForeground(Color.blue) ;
reportButton.setSize(150, 50);
reportButton.setLocation(450, 350) ;

queryButton = new JButton{"QUERIES") ;
queryButton.setBackground(panelColor);
queryButton.setForeground(Color.blue) ;
queryButton.setSize(150, 50);
queryButton.setLocation(150, 4 90) ;

stopButton = new JButton("EXIT");
stopButton.setBackground(panelColor) ;
stopButton.setForeground(Color.blue) ;
stopButton.setSize(150, 50);
stopButton.setLocation(450, 490) ;

mainMenu.add(shipLabell) ;
mainMenu.add(tableButton) ;
mainMenu.add(inputButton);
mainMenu.add(updateButton) ;
mainMenu.add(reportButton);
mainMenu.add(queryButton) ;
mainMenu.add(stopButton) ;

deck.add(mainMenu, "mainMenu");

273

// Initialize the table menu and its components
tableMenu = new JPanel();
tableMenu.setLayout(null);
tableMenu.setSize(800, 600);
tableMenu.setBackground(panelColor);

personnelTable = new JButton("PERSONNEL TABLE");
personnelTable.setBackground(buttonColor);
personnelTable.setSize(200, 50);
personnelTable.setLocation(150, 100);

operationTable = new JButton("OPERATION TABLE");
operationTable.setBackground(buttonColor);
operationTable.setSize(200, 50);
operationTable.setLocation(450, 100);

equipmentTable = new JButton("EQUIPMENT TABLE");
equipmentTable.setBackground(buttonColor);
equipmentTable.setSize(200, 50);
equipmentTable.setLocation(150, 250);

trainingTable = new JButton("TRAINING TABLE");
trainingTable.setBackground(buttonColor);
trainingTable.setSize(200, 50);
trainingTable.setLocation(450, 250);

departmentTable = new JButton("DEPARTMENT TABLE");
departmentTable.setBackground(buttonColor);
departmentTable.setSize(200, 50) ;
departmentTable.setLocation(150, 400);

divisionTable = new JButton("DIVISION TABLE");
divisionTable.setBackground(buttonColor);
divisionTable.setSize(200, 50);
divisionTable.setLocation(450, 400) ;

mainMenuTable = new JButton("RETURN TO MAIN MENU");
mainMenuTable.setBackground(buttonColor);
mainMenuTable.setSize(200, 50);
mainMenuTable.setLocation(300, 500) ;

tableMenu.add(personnelTable) ;
tableMenu.add(operationTable) ;
tableMenu.add(equipmentTable);
tableMenu.add(trainingTable) ;
tableMenu.add(departmentTable);
tableMenu.add(divisionTable) ;
tableMenu.add(mainMenuTable);

deck.add(tableMenu, "tableMenu");

// Initialize the input form menu and its components
inputFormMenu = new JPanel();
inputFormMenu.setLayout(null);

274

inputFormMenu.setSize(800, 600);
inputFormMenu.setBackground(panelColor);

personnellnputForm = new JButton("PERSONNEL INPUT FORM");
personnellnputForm.setBackground(buttonColor);
personnellnputForm.setSize(200, 50);
personnellnputForm.setLocation(150, 20);

operationlnputForm = new JButton("OPERATION INPUT FORM");
operationlnputForm.setBackground(buttonColor);
operationlnputForm.setSize(200, 50);
operationlnputForm.setLocation(450, 20) ;

equipmentInputForm = new JButton("EQUIPMENT INPUT FORM");
equipmentInputForm.setBackground(buttonColor);
equipmentInputForm.setSize(200, 50) ;
equipmentInputForm.setLocation(150, 100) ;

traininglnputForm = new JButton("TRAINING INPUT FORM");
traininglnputForm.setBackground(buttonColor);
traininglnputForm.setSize(200, 50);
traininglnputForm.setLocation(450, 100);

overhaulInputForm = new JButton("OVERHAUL INPUT FORM");
overhaulInputForm.setBackground(buttonColor);
overhaulInputForm.setSize(200, 50);
overhaulInputForm.setLocation(150, 180) ;

courseToTakelnputForm = new JButton("COURSE-TO-TAKE INPUT FORM");
courseToTakelnputForm.setBackground(buttonColor);
courseToTakelnputForm.setSize(200, 50);
courseToTakelnputForm.setLocation(450, 180);

courseTakenlnputForm = new JButton("COURSE-TAKEN INPUT FORM");
courseTakenlnputForm.setBackground(buttonColor);
courseTakenlnputForm.setSize(200, 50);
courseTakenlnputForm.setLocation(150, 260);

assignmentlnputForm = new JButton("ASSIGNMENT INPUT FORM");
assignmentlnputForm.setBackground(buttonColor);
assignmentlnputForm.setSize(200, 50) ;
assignmentlnputForm.setLocation(450, 260);

languagelnputForm = new JButton("LANGUAGE INPUT FORM");
languagelnputForm.setBackground(buttonColor);
languagelnputForm.setSize(200, 50);
languagelnputForm.setLocation(150, 340);

eventInputForm = new JButton("EVENT INPUT FORM");
eventInputForm.setBackground(buttonColor) ;
eventlnputForm.setSize(200, 50);
eventInputForm.setLocation(450, 340);

visitInputForm = new JButton("PORT VISIT INPUT FORM");
visitlnputForm.setBackground(buttonColor) ;

275

visitlnputForm.setSize(200, 50);
visitInputForm.setLocation(150, 420) ;

failurelnputForm = new JButton("FAILURE INPUT FORM");
failurelnputForm.setBackground(buttonColor);
failurelnputForm.setSize(200, 50);
failurelnputForm.setLocation(450, 420);

mainMenuInputForm = new JButton("RETURN TO MAIN MENU");
mainMenuInputForm.setBackground(buttonColor);
mainMenuInputForm.setSize(200, 50);
mainMenuInputForm.setLocation(300, 500);

inputFormMenu.add(personnellnputForm) ;
inputFormMenu.add(operationlnputForm) ;
inputFormMenu.add(equipmentInputForm) ;
inputFormMenu.add(traininglnputForm) ;
inputFormMenu.add(overhaulInputForm) ;
inputFormMenu.add(courseToTakelnputForm) ;
inputFormMenu.add(courseTakenlnputForm) ;
inputFormMenu.add(assignmentInputForm) ;
inputFormMenu.add(languagelnputForm) ;
inputFormMenu.add(eventlnputForm);
inputFormMenu.add(visitlnputForm);
inputFormMenu.add(failurelnputForm); .
inputFormMenu.add(mainMenuInputForm) ;

deck.add(inputFormMenu, "inputFormMenu");

// Initialize the update form menu and its components
updateFormMenu = new JPanel();
updateFormMenu.setLayout(null);
updateFormMenu.setSize(800, 600) ;
updateFormMenu.setBackground(panelColor) ;

personnelUpdateForm = new JButton("PERSONNEL UPDATE FORM");
personnelUpdateForm.setBackground(buttonColor);
personnelUpdateForm.setSize(200, 50) ;
personnelUpdateForm.setLocation(150, 20) ;

operationUpdateForm = new JButton("OPERATION UPDATE FORM");
operationUpdateForm.setBackground(buttonColor);
operationUpdateForm.setSize(200, 50) ;
operationUpdateForm.setLocation(450, 20) ;

equipmentUpdateForm = new JButton("EQUIPMENT UPDATE FORM");
equipmentUpdateForm.setBackground(buttonColor);
equipmentUpdateForm.setSize(200, 50) ;
equipmentUpdateForm.setLocation(150, 100);

trainingUpdateForm = new JButton("TRAINING UPDATE FORM");
trainingUpdateForm.setBackground(buttonColor);
trainingUpdateForm.setSize(200, 50) ;
trainingUpdateForm.setLocation(450, 100) ;

276

overhaulUpdateForm = new JButton("OVERHAUL UPDATE FORM");
overhaulUpdateForm.setBackground(buttonColor);
overhaulUpdateForm.setSize(200, 50);
overhaulUpdateForm.setLocation(150, 180);

courseToTakeUpdateForm = new JButton("COURSE-TO-TAKE UPDATE
FORM");

courseToTakeUpdateForm. setBackground (buttonColor) ;'
courseToTakeUpdateForm.setSize(200, 50);
courseToTakeUpdateForm.setLocation(450, 180);

courseTakenUpdateForm = new JButton("COURSE-TAKEN UPDATE FORM");
courseTakenUpdateForm.setBackground(buttonColor);
courseTakenUpdateForm.setSize(200, 50);
courseTakenUpdateForm.setLocation(150, 260) ;

assignmentUpdateForm = new JButton("ASSIGNMENT UPDATE FORM");
assignmentUpdateForm.setBackground(buttonColor);
assignmentUpdateForm.setSize(200, 50);
assignmentUpdateForm.setLocation(450, 260);

languageUpdateForm = new JButton("LANGUAGE UPDATE FORM");
languageUpdateForm.setBackground(buttonColor);
languageUpdateForm.setSize(200, 50) ;
languageUpdateForm.setLocation(150, 340);

eventUpdateForm = new JButton("EVENT UPDATE FORM");
eventUpdateForm.setBackground(buttonColor);
eventUpdateForm.setSize(200, 50) ;
eventUpdateForm.setLocation(450, 340);

visitUpdateForm = new JButton("PORT VISIT UPDATE FORM");
visitUpdateForm.setBackground(buttonColor);
visitUpdateForm.setSize(200, 50);
visitUpdateForm.setLocation(150, 420);

failureUpdateForm = new JButton("FAILURE UPDATE FORM");
failureUpdateForm.setBackground(buttonColor);
failureUpdateForm.setSize(200, 50);
failureUpdateForm.setLocation(450, 420);

mainMenuUpdateForm = new JButton("RETURN TO MAIN MENU");
mainMenuUpdateForm.setBackground(buttonColor);
mainMenuUpdateForm.setSize(200, 50) ;
mainMenuUpdateForm.setLocation(300, 500);

updateFormMenu.add(personnelUpdateForm);
updateFormMenu.add(operationUpdateForm);
updateFormMenu.add(equipmentUpdateForm);
updateFormMenu.add(trainingUpdateForm);
updateFormMenu.add(overhaulUpdateForm);
updateFormMenu.add(courseToTakeUpdateForm);
updateFormMenu.add(courseTakenUpdateForm);
updateFormMenu.add(assignmentUpdateForm);

277

updateFormMenu.add(languageüpdateForm);
updateFormMenu.add(eventUpdateForm);
updateFormMenu.add(visitUpdateForm);
updateFormMenu.add(failureUpdateForm);
updateFormMenu.add(mainMenuUpdateForm);

deck.add(updateFormMenu, "updateFormMenu")

// Initialize the report menu and its components
reportMenu = new JPanel();
reportMenu.setLayout(null);
reportMenu.setSize(800, 600);
reportMenu.setBackground(panelColor);

divisionReport = new JButton("DIVISION REPORT");
divisionReport.setBackground(buttonColor);
divisionReport.setSize(200, 50);
divisionReport.setLocation(150, 50);

overhaulReport = new JButton("OVERHAUL REPORT");
overhaulReport.setBackground(buttonColor);
overhaulReport.setSize (200, 50) ;
overhaulReport.setLocation(450, 50);

trainingReport = new JButton("TRAINING REPORT");
trainingReport.setBackground(buttonColor);
trainingReport.setSize (200, 50) ;
trainingReport.setLocation(150, 170);

assignmentReport = new JButton("ASSIGNMENT REPORT")
assignmentReport.setBackground(buttonColor);
assignmentReport.setSize(200, 50);
assignmentReport.setLocation(450, 170);

languageReport = new JButton("LANGUAGE REPORT");
languageReport.setBackground(buttonColor);
languageReport.setSize(200, 50) ;
languageReport.setLocation(150, 290);

eventReport = new JButton("EVENT REPORT");
eventReport.setBackground(buttonColor);
eventReport.setSize(200, 50);
eventReport.setLocation(450, 290) ;

visitReport = new JButton("PORT VISIT REPORT");
visitReport.setBackground(buttonColor) ;
visitReport.setSize(200, 50);
visitReport.setLocation(150, 410);

failureReport = new JButton("FAILURE REPORT");
failureReport.setBackground(buttonColor);
failureReport.setSize(200, 50);
failureReport.setLocation(450, 410);

278

mainMenuReport = new JButton("RETURN TO MAIN MENU")
mainMenuReport.setBackground(buttonColor);
mainMenuReport.setSize(200, 50);
mainMenuReport.setLocation(300, 500) ;

reportMenu.add(divisionReport);
reportMenu.add(overhaulReport);
reportMenu.add(trainingReport);
reportMenu.add(assignmentReport);
reportMenu.add(languageReport);
reportMenu.add(eventReport);
reportMenu.add(visitReport);
reportMenu.add(failureReport);
reportMenu.add(mainMenuReport);

deck.add(reportMenu, "reportMenu");

// Initialize the query menu and its components
queryMenu = new JPanel();
queryMenu.setLayout(null);
queryMenu.setSize(800, 600);
queryMenu.setBackground(panelColor);

courseToTakeQuery = new JButton("COURSE-TO-TAKE QUERY");
courseToTakeQuery.setBackground(buttonColor);
courseToTakeQuery.setSize(200, 50) ;
courseToTakeQuery.setLocation(150, 50);

courseTakenQuery = new JButton("COURSE-TAKEN QUERY");
courseTakenQuery.setBackground(buttonColor);
courseTakenQuery.setSize(200, 50) ;
courseTakenQuery.setLocation(450, 50);

assignmentQuery = new JButton("ASSIGNMENT QUERY");
assignmentQuery.setBackground(buttonColor);
assignmentQuery.setSize(200, 50);
assignmentQuery.setLocation(150, 170);

languageQuery = new JButton("LANGUAGE QUERY");
languageQuery.setBackground(buttonColor);
languageQuery.setSize(200, 50);
languageQuery.setLocation(450, 170) ;

eventQuery = new JButton("EVENT QUERY");
eventQuery.setBackground(buttonColor) ;
eventQuery.setSize(200, 50);
eventQuery.setLocation(150, 290);

visitQuery = new JButton("PORT VISIT QUERY");
visitQuery.setBackground(buttonColor);
visitQuery.setSize(200, 50);
visitQuery.setLocation(450, 290);

279

failureQuery = new JButton("FAILURE QUERY");
failureQuery.setBackground(buttonColor);
failureQuery.setSize(200, 50);
failureQuery.setLocation(150, 410) ;

newQuery = new JButtonC'NEW QUERY");
newQuery.setBackground(buttonColor) ;
newQuery.setSize(200, 50);
newQuery.setLocation(450, 410);

mainMenuQuery = new JButton("RETURN TO MAIN MENU")
mainMenuQuery.setBackground(buttonColor);
mainMenuQuery.setSize(200, 50);
mainMenuQuery.setLocation(300, 500);

queryMenu.add(courseToTakeQuery);
queryMenu.add(courseTakenQuery);
queryMenu.add(assignmentQuery) ;
queryMenu.add(languageQuery) ;
queryMenu.add(eventQuery);
queryMenu.add(visitQuery);
queryMenu.add(failureQuery);
queryMenu.add(newQuery);
queryMenu.add(mainMenuQuery) ;

deck.add(queryMenu, "queryMenu") ;

// Add the menu items to the appropriate menus
fileMenu.addSeparator() ;
fileMenu.add(exit) ;
fileMenu.addSeparator() ;

helpMenu.add(contents);
helpMenu.addSeparator() ;
helpMenu.add(about);

menuBar = new JMenuBar() ;

// Add menus to the menu bar
menuBar.add(fileMenu);
menuBar.add(helpMenu);

setJMenuBar(menuBar);

// Add action listeners to menu items to handle action events
exit.addActionListener{ new ActionListener()
{

public void actionPerformed (ActionEvent e)
{

System.exit(0);
}

});

280

contents.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
JOptionPane.showMessageDialog(null,

"FOR HELP, CONSULT WITH LTJG.
Yuksel Can",
"HELP TOPICS",
JOptionPane.INFORMATION_MESSAGE) ;

}

about.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
JOptionPane.showMessageDialog(null,

"POET DATABASE APPLICATION PROGRAM FOR " +
"THE TURKISH NAVY FRIGATES, Written By " +
"LTJG. Yuksel Can", "ABOUT THE PROGRAM",
JOptionPane.INFORMATION_MESSAGE);

}
});

// Add action listeners to buttons to handle action events
exitButton.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
System.exit(0);

}
});

startButton.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
cardManager.show(deck, "mainMenu");

}
});

tableButton.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
cardManager.show(deck, "tableMenu");

}
});

281

inputButton.addActionListener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "inputFormMenu");

}
});

updateButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "updateFormMenu");

}

>)' .

reportButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "reportMenu");

}
});

query-Button.addActionListener (new ActionListener ()
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "queryMenu");

}
});

stopButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

System.exit(0);
}

});

personnelTable.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

personnelTable();
}

});

282

operationTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{ .
operationTable();

}
});

equipmentTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
equipmentTable();

}
});

trainingTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
trainingTable();

}
});

departmentTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
departmentTable{);

}
});

divisionTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
divisionTable();

}
});

mainMenuTable.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
cardManager.show(deck, "mainMenu");

}
});

personnellnputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
personnellnputForm();

283

});

operationlnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

operationlnputFormO ;
}

});

equipmentlnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

equipmentlnputForm();
}

}};

traininglnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

trainingInputForm();
}

});

overhaulInputForm.addActionListener(new ActionListener(}
{

public void actionPerformed(ActionEvent e)
{

overhaulInputForm();
}

});

courseToTakelnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseToTakelnputFormO ;
}

});

courseTakenlnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseTakenlnputFormO ;
}

});

assignmentlnputForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{ .

284

assignmentlnputFormO ;

}
});

languagelnputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
languagelnputForm();

}
});

eventlnputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
eventInputForm();

}
});

visitlnputForm.addActionListener(new ActionListener()

{
public void actionPerforraed(ActionEvent e)

{
visitlnputForm();

}
});

failurelnputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
failureInputForm();

}
});

mainMenuInputForm.addActionListener(new ActionListener()

{
public void actionPerformed(ActionEvent e)

{
cardManager.show(deck, "mainMenu");

}
});

personnelUpdateForm.addActionListener(new ActionListener(]

{
public void actionPerformed(ActionEvent e)

{
personnelUpdateForm();

}
});

285

operationUpdateForm.addActionListener(new ActionListener('
{

public void actionPerformed(ActionEvent e)
{

operationUpdateForm();

equipmentUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

equipmentUpdateForm() ;
}

});

trainingUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

trainingUpdateFormO ;
}

});

overhaulUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

overhaulUpdateForm();
}

});

courseToTakeUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseToTakeUpdateForm();
}

});

courseTakenUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseTakenUpdateForm();
}

});

assignmentUpdateForm.addActionListener(new. ActionListener()
{

public void actionPerformed(ActionEvent e)
{

assignmentUpdateFormO ;
}

});

286

languageUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

languageUpdateForm();
}

});

eventUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

eventUpdateForm();
}

}) ;

visitUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

visitUpdateFormO ;
}

});

failureUpdateForm.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

failureUpdateForm();
}

});

mainMenuUpdateForm.addActionListener(new ActionListener{)
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "mainMenu");

}
});

divisionReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

divisionReport();
}

});

overhaulReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

overhaulReport();

287

}};

trainingReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

trainingReport();
}

});

assignmentReport.addActionListener(new ActionListeneri
{

public void actionPerformed(ActionEvent e)
{

assignmentReport();
}

});

languageReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

languageReport();
}

});

eventReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

eventReport();
}

});

visitReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

visitReport();
}

}); '

failureReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

failureReport(};
}

});

mainMenuReport.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

288

cardManager.show(deck, "mainMenu");

}
});

courseToTakeQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseToTakeQuery(};
}

});

courseTakenQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

courseTakenQuery();
}

});

assignmentQuery.addActionLis'tener (new ActionListener ()
{

public void actionPerformed(ActionEvent e)
{

assignraentQuery();
}

});

languageQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

languageQuery();
}

});

eventQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

eventQuery();
}

});

visitQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

visitQuery();
}

});

289

failureQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

failureQuery();
}

});

newQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

showQueryWindow() ;
}

});

mainMenuQuery.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

cardManager.show(deck, "mainMenu");

}
});

} // end initC

* Method personnelTable retrieves all records from Personnel table,
* @param none
* ©return void
*/

public void personnelTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL() ,

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String tableQuery = "SELECT * FROM Personnel";
dbadapter.executeQuery(tableQuery);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

290

JPanel controlPanel = new JPanel();

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext() .

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()

{
public void stateChanged(ChangeEvent e)

{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(
JSlider.HORIZONTAL, 5, 100, 20);

rowHeightSlider.getAccessibleContext().
setAccessibleName("Row Height");

rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()

{
public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("PERSONNEL TABLE");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPaneO.add(scrollPane, BorderLayout.CENTER);
frame.getContentPane().add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end personnelTable()

291

* Method operationTable retrieves all records from Operation table.
* @param none
* Sreturn void
*/

public void operationTable() {

JDBCAdapter dbadapter;
dbadapter = new .JDBCAdapter(connectionPanel.getURLO,

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String tableQuery = "SELECT * FROM Operation";
dbadapter.executeQuery(tableQuery);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelf);

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener ()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new Dimension(spacing,
spacing)) ;
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);

292

rowHeightSlider.getAccessibleContext().
setAccessibleName("Row Height");

rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider) ;

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height =.((JSlider) e.getSource()).getValue();

table.setRowHeight(height) ;
table.repaint();

}
});

JFrame frame = new JFrame("OPERATION TABLE");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray) ;
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPaneO.add(scrollPane, BorderLayout.CENTER);
frame.getContentPaneO.add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end operationTable()

/**
* Method equipmentTable retrieves all records from Equipment table.
* @param none
* Sreturn void
*/

public void equipmentTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver() ,

connectionPanel.getUserlD(),

connectionPanel.getPasswordO) ;
dbadapter.connect() ;

String tableQuery = "SELECT * FROM Equipment";-
dbadapter.executeQuery(tableQuery) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

293

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1);

cellSpacingSlider.getAccessibleContext().
setAccessibleName("Inter-Cell Spacing");

cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue() ;

table.setlntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("EQUIPMENT TABLE");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray) ;
frame.getContentPane().setLayout(new BorderLayout()) ;
frame.getContentPaneO.add(scrollPane, BorderLayout.CENTER);
frame.getContentPaneO .add(controlPanel, BorderLayout.NORTH) ;

frame.show();

} // end equipmentTable()

294

* Method trainingTable retrieves all records from Training table.
* @param none
* @return void
*/

public void trainingTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL() ,

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String tableQuery = "SELECT * FROM Training";
dbadapter.executeQuery(tableQuery);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanel (') ;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1) ;

cellSpacingSlider.getAccessibleContext() .
setAccessibleName("Inter-Cell Spacing");

cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

295

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint ();

}
});

JFrame frame = new JFrame("TRAINING TABLE");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER);
frame.getContentPaneO.add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end trainingTable()

/**

* Method departmentTable retrieves all records from Department
* table.
* Sparam none
* @return void
*/

public void departmentTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver() ,

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String tableQuery = "SELECT * FROM Department";
dbadapter.executeQüery(tableQuery);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

296

JPanel control-Panel = new JPanel () ; ■

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1);

cellSpacingSlider.getAccessibleContext().
setAccessibleName("Inter-Cell Spacing");

cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener ()
{

public void stateChanged(ChangeEvent e)
{
int.spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext(). .

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("DEPARTMENT TABLE");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout ());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER);
frame.getContentPane().add(controlPanel, BorderLayout.NORTH);

frame.show() ;

} // end departmentTable()

297

* Method divisionTable retrieves all records from Division table.
* @param none
* Sreturn void
*/

public void divisionTable() {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect ();

String tableQuery = "SELECT * FROM Division";
dbadapter.executeQuery(tableQuery) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table) ;

JPanel controlPanel = new JPanel();

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
JSlider.HORIZONTAL, 0, 10, 1) ;

cellSpacingSlider.getAccessibleContext().
setAccessibleName("Inter-Cell Spacing");

cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new Dimension(spacing,
spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

298

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("DIVISION TABLE");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout()) ;
frame.getContentPane().add(scrollPane, BorderLayout.CENTER);
frame.getContentPane().add(controlPanel, BorderLayout.NORTH);

frame.show();

} // end divisionTableO

/**
* Method personnellnputForm adds a new record to the Personnel
* table.
* @param none
* @return void
*/

public void personnellnputForm() {

final PersonnelForm form = new PersonnelForm("PERSONNEL FORM") ;

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Personnel " +
"VALUES (" + "'" +
form.militarylDField.getTextO + "', '" +
form.firstNameField.getTextO + "', '" +
form.lastNameField.getTextO + "', '" +

299

ri i i rr

if l l ii

form.departmentField.getSelectedltem() +

form.divisionField.getSelectedltem() +

form.rankField.getSelectedltem() + "', "'

form.ratingField.getSelectedltem{) + "',

form.birthDateField.getText() + "', '" +
form.birthPlaceField.getText() + "', '" +
form.fatherField.getText() + "', '" +
form.motherField.getText() + "', '" +
form.serviceDateField.getText() + "', '"

form.rankDateField.getTextO + "', '" +
form.genderField.getSelectedltem() + "',

form.maritalField.getSelectedltem() + "',

form.spouseField.getText () + '", " +
form.childrenField.getText() + ", '" +
form.streetField.getText() + "', '" +
form.cityField.getText() + "', '" +
form.stateField.getText() + "', '" +
form.zipField.getText() + "', '" +
form.phoneField.getText() + "', '" +
form. speciality-Field. getText () + "', "' +
form.educationField.getSelectedltem() +

form.assignmentField.getText() + "', '" +
form.startDateField.getText() + "', '" +
form. cabinNumberField.getText{) + '", " +
form.cabinPhoneField.getText() + ")";

updateQuery(insertQuery);

form.dispose();

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

});

} // end personnellnputFormO

300

/**
* Method operationlnputForm adds a new record to the Operation
* table.
* @param none
* @return void
*/

public void operationlnputForm() {

final OperationForm form = new OperationForm("OPERATION FORM");

form.updateButton.setEnabled(false) ;

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Operation " +
"VALUES (" + "'" +
form.nameField.getTextf) + '", '" +
form.typeField.getSelectedltemO + '", '"

form.startDateField.getTextO + "', '" +
form.endDateField.getTextO + "', " +
form.durationField.getTextO + ", .•" +
form.placeField.getTextO + '", " +
form.daytimeField.getTextO + ", " +
form.nighttimeField.getTextO + ", '" +
form.heloField.getTextO + '", " +
form.flyingField.getTextO + ", " +
form.dippingNumberField.getText () + ", "

form.dippingTimeField.getTextO + ", " +
form.fuelCostField.getTextO + ", " +
form.ammoCostField.getTextO + ", " +
form.amortizationField.getText() + ", " +
form.costField.getText() + ")";

updateQuery(insertQuery) ;

form.dispose();

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

});

301

} // end operationInputForm()

* Method equipmentlnputForm adds a new record to the Equipment
* table.
* Sreturn void
*/

public void equipmentlnputForm() {

final EquipmentForm form = new EquipmentForm("EQUIPMENT FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Equipment " +
"VALUES (" + ""■ +
form.serialNumberField.getText() + "', '"

form.stockNumberField.getText() + "', '"

form.nameField.getText() + "', '" +
form.typeField.getSelectedltemO + "', '"

form.dateField.getText() + '", '" +
f orm.manufacturerField.getText() + "', '"

form.modelField.getText() + "', '" +
form.locationField.getText() + "', " +
form.runtimeField.getText() + ")";

updateQuery(insertQuery) ;

form.dispose();

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

});

} // end equipmentlnputForm()

302

/**
* Method traininglnputForm adds a new record to the Training
* table.
* @param none
* @return void
*/

public void traininglnputForm() {

final TrainingForm form = new TrainingForm("TRAINING FORM");

form.updateButton.setEnabled(false) ;

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Training " +
"VALUES (»+»'"+
form.nameField.getTextO + "', '" +
form.placeField.getSelectedltem() + if f ff

form.durationField.getTextO + ", '" +
form.descriptionField.getTextO + "')"

updateQuery(insertQuery) ;

form.dispose();

});

form.cancelButton.addActionListener(new ActionListener() '
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

}) ;

} // end traininglnputForm()

303

/**
* Method overhaulInputForm adds a new record to the Overhaul
* table.
* Sparam none
* Sreturn void
*/

public void overhaulInputForm() {

final OverhaulForm form = new OverhaulForm("OVERHAUL FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Overhauls " +
"VALUES (" + ""' +
form.shipField.getSelectedltemO + "', "

form.numberField.getText() + ", "' +
form.startDateField.getText() + "', '" +
form.endDateField.getText() + "', " +
form.durationField.getText() + ", '" +
form.shipyardField.getText() + "')";

updateQuery(insertQuery);

form.dispose() ;
}

In-

form. cancelButton. addActionListener (new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

});

} // end overhaulInputForm)

304

/**
* Method courseToTakelnputForm adds a new record to the
* CoursesToTake table.
* @param none
* @return void
*/

public void courseToTakelnputForm() {

final CourseToTakeForm form = new CourseToTakeForm(
"COURSE-TO-TAKE FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO CoursesToTake " +
"VALUES (»+»•"+
form.militarylDField.getTextO + "', '" +
form.courseField.getText() + "')";

updateQuery(insertQuery);

form.dispose();
}

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose() ;
}

});

} // end courseToTakelnputForm()

* Method courseTakenlnputForm adds a new record to the
* CoursesTaken table.
* Sparam none
* Sreturn void
*/

305

public void courseTakenInputForm() {

final CourseTakenForm form = new CourseTakenForm(
"COURSE-TAKEN FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabledffalse) ;"

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO CoursesTaken " +
"VALUES (" + "'" +
form.militarylDField.getText() + "', "' +
form.courseField.getText() + "', '" +
form.startDateField.getText() + "', "' +
form.endDateField.getText() + "', " +• .
form.gradeField.getText() + ")";

updateQuery(insertQuery);

form.dispose();
}

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

});

} // end courseTakenlnputFormO

/**

* Method assignmentInputForm adds a new record to the
* Assignments table.
* @param none
* Greturn void
*/

public void assignmentlnputFormO {

final AssignmentForm form = new AssignmentForm(
"ASSIGNMENT FORM");

306

form.updateButton.setEnabled(false) ;

form.deleteButton.setEnabled(false);

f orm. addButton.addActionListener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Assignments " +
"VALUES (»+»<»+
form.militarylDField.getTextO + "', " +
form.numberField.getTextO + ", "' +
form.stationField.getTextO + "', '" +
form.positionField.getText() + '", " +
form.durationField.getText() + ")";

updateQuery(insertQuery);

form.dispose();
}

});

form.cancelButton.addActionListener(new ActionListener ()
{

public void actionPerformed(ActionEvent e)
{

form.dispose() ;
}

});

} // end assignmentInputForm(;

* Method languagelnputForm adds a new record to the
* ForeignLanguages table.
* @param none
* @return void
*/

public void languagelnputForm() {

final LanguageForm form = new LanguageForm("LANGUAGE FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

307

n i in

String insertQuery = "INSERT INTO ForeignLanguages "

"VALUES (" + "'" +
form.militarylDField.getTextO + "', '" +
form.languageField.getSelectedltem() +

form.degreeField.getSelectedlteraO +

updateQuery(insertQuery);

form.dispose();

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose() ;
}

});

// end languagelnputFormO

/**

* Method eventlnputForm adds a new record to the Events table.
* @param none
* @return void
*/

public void eventlnputForm() {

final EventForm form = new EventForm("EXERCISE/EVENT FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false);

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Events " +
"VALUES (" + •"" +
form.exerciseField.getText() + "', '" +
form.eventField.getText() + "', '" +
form.typeField.getSelectedltem() + "', "

form.numberField.getText() + ", " +
form.durationField.getText() + n \ n

308

updateQuery(insertQuery);

form.dispose();

));

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

I);

} // end eventlnputFormO

/**
* Method visitlnputForm adds a new record to the PortVisits table.
* @param none
* @return void
*/

public void visitlnputForm{) {

final PortVisitForm form = new PortVisitForm("PORT VISIT FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false) ;

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO PortVisits " +
"VALUES (" + "'" +
form.exerciseField.getText() + "', '" +
form.portField.getTextO + '", •" +
form.startDateField.getText() + "', '" +
form.endDateField.getTextO +"'," +
form.durationField.getText() + ")";

updateQuery(insertQuery);

form.dispose();
}

});

309

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

}) ;

} // end visitlnputFormO

/**

* Method failurelnputForm adds a new record to the Failures table.
* @param none
* @return void
*/

public void failurelnputForm() {

final FailureForm form = new FailureForm(
"EQUIPMENT FAILURE FORM");

form.updateButton.setEnabled(false);

form.deleteButton.setEnabled(false) ;

form.addButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String insertQuery = "INSERT INTO Failures " +
"VALUES (" + "'" +
form.serialField.getText() + "', " +
form.failureField.getText() + ", "' +
form.descriptionField.getText() + "', '"

form.diagnosisField.getText() + "', " +
form.dateField.getText() + ", " +
form.durationField.getText() + ")";

updateQuery(insertQuery);

form.dispose();

});

form.cancelButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

form.dispose();
}

310

});

} // end failurelnputForml

/**

* Method personnelüpdateForm retrieves and displays a personnel
* record, which can then be modified or deleted.
* @parara none
* Sreturn void
*/

public void personnelüpdateForm (), {

JPanel getPanel = new JPanelO;
JLabel getNameLabel = new JLabel("Enter Military ID : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNameLabel);
getPanel.add(getNameField) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Personnel WHERE " +
"MilitarylD ="+»•»+
getNameField. getTextO + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next ();

final PersonnelForm form = new PersonnelForm(
"PERSONNEL FORM");

form.militarylDField.setText(rs.getString(1));
form.firstNameField.setText(rs.getString(2));
form.lastNameField.setText(rs.getString(3)) ;

form.departmentField.setSelectedItem(rs.getString(4));

form.divisionField.setSelectedItem(rs.getString(5));

form.rankField.setSelectedItem(rs.getString(6));

311

form.ratingField.setSelectedItem(rs.getString(7));
form.birthDateField.setText(rs.getString(8));
form.birthPlaceField.setText(rs.getString(9));
form.fatherField.setText(rs.getString (10));
form.motherField.setText(rs.getString (11));

form.serviceDateField.setText(rs.getString(12));
form.rankDateField.setText(rs.getString (13));

form.genderField.setSelectedltem(rs.getString(14));

form.maritalField.setSelectedItem(rs.getString(15));
form.spouseField.setText(rs.getString (16));
form.childrenField.setText(rs.getString(17));
form.streetField.setText(rs.getString (18));
form.cityField.setText(rs.getString(19));
form.stateField.setText(rs.getString(20));
form. zipField. setText (rs .getString (21)) ;'
form.phoneField.setText(rs.getString(22));
form.specialityField. setText(rs.getString(23));

form.educationField.setSelectedItem(rs.getString(24));
form.assignmentField.setText(rs.getString(25));
form.startDateField.setText(rs.getString(26));

form.cabinNumberField.setText(rs.getString(27));
form.cabinPhoneField. setText(rs.getString(28));

form.militarylDField.setEditable(false);

form.addButton.setEnabled(false) ;

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

Personnel SET " +

form.firstNameField.getText() + "'

String updateString = "UPDATE

"FirstName

"LastName =»+«'»+
form.lastNameField.getText()

"DepartmentName = " + "*" +

form.departmentField.getSelectedltemO + "', " +
"DivisionName = "

form.divisionField.getSelectedltemO + "', " +
"Rank = " + "*" +

312

form.rankField.getSelectedltemO + "', " +
"Rating = " + "'" +

form.ratingField.getSelectedltemO + "', " +
"DateOfBirth =»+»•»+

form.birthDateField.getTextO + "', " +
"PlaceOfBirth =»+»•"+

form.birthPlaceField.getTextO + "', " +

ir i IT ,-" +

IT I II , " +

H i ii i ii "FatherName
form.fatherField.getText() +

"MotherName =»+»'»+
form.motherField.getText() +

"ActiveDutyServiceDate = " +

form.serviceDateField.getText() + "', " +

+ "', " +

"DateOfRank = » + •"» +
form.rankDateField.getText()

"Gender ii . H i II

form.genderField.getSelectedltemO + "', " +
"MaritalStatus = " + — » 4- H I H

form.maritalFielci.getSelectedltemO + "', " +

II i I»

+ ", ** +

II i II , " +

n i II , " +

II i II

II i II

II i II

"SpouseName =»+»•"+
form.spouseField.getText() +

"NumberOfChildren = " +
form.childrenField.getText{)

"Street = " + "'" +
form.streetField.getText() +

"City = " + "'" +
form.cityField.getText() +

"State =»+"•"+
form.stateField.getText() +

"ZipCode = " + "'" +
form.zipField.getText() +

"PhoneNumber = " + "'" +
form.phoneField.getText() +

"Speciality = " + "'" +

form.specialityField.getText() + "', " +
"Education = " + "'" +

313

form.educationField.getSelectedltemO + "', " +

+

form.assignmentField.getText() + '", " +

form.startDateField.getText() + "', " +

form.cabinNumberField.getText() + "', " +

form.cabinPhoneField.getText() +

"CurrentAssignment = " + "'"

"StartDate = " + "'" +

"CabinNumber = " + "'" +

"CabinPhone = " +

" WHERE MilitarylD = " + "*"

form.militarylDField.getText() + "'";

updateQuery(updateString);

form.dispose();

});

ActionListener ()

e)

form.deleteButton.addActionListener(new

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM

"WHERE MilitarylD
Personnel " +

= n i II i II i

form.militarylDField.getText() + "'";

updateQuery(deleteString) ;

form.dispose() ;
}

});

form.cancelButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

form.dispose();

314

});

}
else {

JOptionPane.showMessageDialog(this,
"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end personnelUpdateFormO

/**
* Method operationUpdateForm retrieves and displays an exercise
* record, which can then be modified or deleted.
* Sparam none
* Sreturn void
*/

public void operationUpdateForm() {

JPanel getPanel = new JPanel();
JLabel getNameLabel = new JLabel("Enter Exercise Name : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNameLabel);
getPanel.add(getNameField) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Exercise",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,

315

Operation SET " +

optionNames[0]) == 0) {

String query = "SELECT * FROM Operation WHERE " +
"ExerciseName ="+»•»+
getNameField.getText() + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next ();

final OperationForm form = new OperationForm(
"OPERATION FORM");

form.nameField.setText(rs.getString(1));

form.typeField.setSelectedltem(rs.getString(2))
form.startDateField.setText(rs.getString(3)) ;
form.endDateField.setText(rs.getString(4));
form.durationField.setText(rs.getString(5));
form.placeField.setText(rs.getString(6));
form.daytimeField.setText(rs.getString(7));
form.nighttimeField.setText(rs.getString(8));
form.heloField.setText(rs.getString(9)) ;
form.flyingField.setText(rs.getString(10));
form.dippingNumberField.setText(rs.getString(11
));

form.dippingTimeField.setText(rs.getString(12))
form.fuelCostField.setText(rs.getString(13));
form.ammoCostField.setText(rs.getString(14));

form.amortizationField.setText(rs.getString(15)
);

form.costField.setText(rs.getString(16));

form.nameField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

String updateString = "UPDATE

v "ExerciseType = " + ""

form.typeField.getSelectedltemO + '", " +
"StartDate = " + "'" +

316

form.startDateField.getText() +"',"+

ii i ii

+

+

form.nighttimeField.getTextO + ", " +

111 ii

form.dippingNumberField.getText() + ", " +

form.dippingTimeField.getText() + ", " +

form.amortizationField.getText() + ", " +

"EndDate =»+"'»+
form.endDateField.getText()

"Duration = " +
form.durationField.getText()

"Place =»+"'"+
form.placeField.getText() +

"DaytimeUnderwayHours = " +
form.daytimeField.getText()

"NighttimeUnderwayHours = "

"HeloTailNumber = " + "'" +
form.heloField.getText() +

"FlyingDuration = " +
form.flyingField.getText() +

"NumberOfDippings = " +

"DippingDuration = " +

"FuelCost = " +
form.fuelCostField.getText()

"AmmunitionCost = " +
form.ammoCostField.getText()

"Amortization = " +

"CostOfExercise = " +
form.costField.getText() +

" WHERE ExerciseName ■= " +

form.nameField.getText() +

updateQuery(updateString);

form.dispose();

});

317

ActionListener()

Operation " +

If i If T II i

form.nameField.getText() + "'";

form.deleteButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM

"WHERE ExerciseName =

ActionListener()

e)

updateQuery(deleteString);

form.dispose();
}

});

form.cancelButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{

}
form.dispose();

});

database",

}
else {

JOptionPane.showMessageDialog(this,
"Unable to find record in

"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch

} // end if

} // end operationUpdateFormO

318

/**

* Method equipmentUpdateForm retrieves and displays an eqipment
* record, which can then be modified or deleted.
* @param none
* @return void
V

public void equipmentUpdateForm() {

JPanel getPanel = new JPanelO;
JLabel getNameLabel = new JLabel("Enter the Serial Number : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNameLabel);
getPanel.add(getNameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Equipment",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Equipment WHERE " +
"SerialNumber =» + »"• +
getNameField. getTextO + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next ();

final EquipmentForm form = new EquipmentForm(
"EQUIPMENT FORM");

form.serialNumberField.setText(rs.getString(l))

form.stockNumberField.setText(rs.getString(2)) ;
form.nameField.setText(rs.getString(3));

form.typeField.setSelectedltem(rs.getString{4))

form.dateField.setText(rs.getString(5));

form.manufacturerField.setText(rs.getString(6))

form.modelField.setText(rs.getString(7));
form.locationField.setText(rs.getString(8)) ;
form.runtimeField.setText(rs.getString(9));

319

form. serialNumberField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

Equipment SET " +

form.stockNumberField.getText() +"',"+

If f »X

form.typeField.getSelectedltemO + "', " +

If f »X / T

form.manufacturerField.getText() + "', " +

II ! II i

String updateString = "UPDATE

"StockNumber = " + "'" +

"EquipmentName ="+»<«+
form.nameField.getText() +

"EquipmentType = " + "'" +

"ProductionDate = " + "'" +
form.dateField.getText() +

"Manufacturer = " + " "■ +

"Model = " + "'" +
form.modelField.getText() +

"Location = " + "*" +
form.locationField.getText()

"Runtime = " +
form.runtimeField.getText()

form.serialNumberField.getText() + "'";

});

" WHERE SerialNumber = " +

updateQuery(updateString);

form.dispose();

ActionListener()

e)

form. deleteButton.addActionListener(new

public void actionPerformed(ActionEvent

320'

{
String deleteString = "DELETE FROM

Equipment " +
"WHERE

SerialNumber =»+»'»+

form.serialNumberField.getText() + "'";

updateQuery(deleteString);

form.dispose();

ActionListeneri

e)

}
});

form.cancelButton.addActionListener(new

public void actionPerformed(ActionEvent

form.dispose();

});

database",

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in

"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),

JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end equipmentUpdateFormO

"SQL ERROR",

321

* Method trainingUpdateForm retrieves and displays a course
* record, which can then be modified or deleted.
* Sparara none
* ©return void
*/

public void trainingUpdateForm() {

JPanel getPanel = new JPanel();
JLabel getNameLabel = new JLabel("Enter the Course Name : ");
JTextField getNameField = new JTextField(25);

getPanel.add(getNameLabel);
getPanel.add(getNameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Course",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

String query = "SELECT * FROM Training WHERE " +
"CourseName ="+"•"+
getNameField.getText() + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final TrainingForm form = new TrainingForm(
"TRAINING FORM");

form.nameField.setText(rs.getString(1));

form.placeField.setSelected!tem(rs.getString(2)
);

form.durationField.setText(rs.getString(3));
form.descriptionField.setText(rs.getString (4));

form.nameField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)

322

Training SET " +

form.placeField.getSelectedltemO +

+

+ ", " +

+

form.descriptionField.getText() + "'" +

String updateString = "UPDATE

"TrainingCenter = " + "'" +

"', " + "CourseDuration = ".

form.durationField.getText()

"CourseDescription = " + "'"

" WHERE CourseName = " +

form.nameField.getText() +

updateQuery(updateString);

form.dispose();
}

});

form.deleteButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{
String deleteString = "DELETE FROM

"WHERE CourseName
Training " +

^ FF r If I ff .

form.nameField.getText () + '"";

updateQuery(deleteString);

form.dispose();
}

});

form.cancelButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

form.dispose();
}

323

});

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end trainingUpdateFormO

/**

* Method overhaulUpdateForm retrieves and displays an overhaul
* record, which can then be modified or deleted.
* @param none
* Oreturn void
*/

public void overhaulUpdateForm(} {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel signLabel = new JLabel("Enter the Ship's Call Sign : ");
JTextField signField = new JTextField(25);

JLabel numberLabel = new JLabel("Enter the Overhaul Number : ");
JTextField numberField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1)) ;
labelPanel.add(signLabel);
labelPanel.add(numberLabel);

324

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(signField);
fieldPanel.add(numberField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Overhaul",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Overhauls WHERE " +
"InternationalCallSign = " +

signField.getText() + "' AND

"OverhaulNumber = " +
numberField.getText();

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final OverhaulForm form = new OverhaulForm(
"OVERHAUL FORM");

■form. shipField.setSelectedltem(rs.getString (1))

form.numberField.setText(rs.getString(2));
form.startDateField.setText(rs.getString(3)) ;
form.endDateField.setText(rs.getString(4)) ;
form.durationField.setText(rs.getString(5));
form.shipyardField.setText(rs.getString(6)) ;

form.shipField.setEditable(false) ;

form.numberField.setEditable(false) ;

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener{)
{

325

Overhaul SET " +

public void actionPerformed(ActionEvent
e)
{

String updateString = "UPDATE

form.startDateField.getText() + "', " +

ft i ri

+ ", " +

"StartDate = " + "'" +

"EndDate = " + "'" +
form.endDateField.getText()

"OverhaulDuration = " +
form.durationField.getText(}

"ShipyardName = » + »"> +
form.shipyardField.getText()

InternationalCallSign = " + "'" +

form.shipField.getSelectedltemO + "' AND " +

" WHERE

"OverhaulNumber. = " +
form.numberField.getText() ;

updateQuery(updateString);

form.dispose();

});

ActionListener{;

e)

form.deleteButton.addActionListener(new

{

II j_ II I II

Overhauls " +

InternationalCallSign

form.shipField.getSelectedltemO +

= ■> +

form.numberField.getText() ;

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM

"WHERE

"' AND OverhaulNumber

updateQuery(deleteString) ;

form.dispose();

});

326

form.cancelButton.addActionListener(new
ActionListener()

e)
public void actionPerformed(ActionEvent

{
form.dispose();

}
});

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end overhaulUpdateFormO

/**
* Method courseToTakeUpdateForm retrieves and displays a course
* record that sould be taken by a person, which can then be
* modified or deleted.
* @param none
* @return void
*/

public void courseToTakeUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel idLabel = new JLabel("Enter the Military ID : ");

327

final JTextField idField = new JTextField(25);

JLabel nameLabel = new JLabel("Enter the Course Name : ");
final JTextField nameField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1));
labelPanel.add(idLabel);
labelPanel.add(nameLabel);

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(idField);
fieldPanel.add(nameField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS)) ;
getPanel.add(labelPanel) ;
getPanel.add(fieldPanel) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select CourseToTake",
JOptionPane.YES_NO_CANCEL_0PTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

String query = "SELECT * FROM CoursesToTake WHERE " +
"MilitarylD = " + "'" +
idField.getText() + "' AND "

"CourseName = " + "'" +
nameField.getText() + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final CourseToTakeForm form = new
CourseToTakeForm("COURSE-TO-TAKE FORM");

form.militarylDField.setText(rs.getString(l)) ;
form.courseField.setText(rs. getString(2)) ;

form.militarylDField.setEditable(false) ;

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)

328

CoursesToTake SET " +
String updateString = "UPDATE

"CourseName = " + "'" +
form.courseField.getText() +

+ "'" +

AND " +

+

it i it.

" WHERE MilitarylD = " + '""

idField.getTextO + "' AND "

"CourseName =»+»•»+
nameField.getTextO + '"";

updateQuery(updateString);

form.dispose();

});

form.deleteButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{
String deleteString = "DELETE FROM " +

"CoursesToTake " +
"WHERE MilitarylD = "

idField.getTextO + '"

"CourseName = " + "'"

nameField.getText() +

updateQuery(deleteString);

form.dispose();
}

});

form.cancelButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)

form.dispose()

});

329

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch

} // end if

} // end courseToTakeUpdateFormO

* Method courseTakenUpdateForm retrieves and displays a course
* record that was taken by a person, which can then be
* modified or deleted.
* @param none
* Sreturn void
*/

public void courseTakenUpdateForm () {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel idLabel = new JLabel("Enter the Military ID : ");
final JTextField idField = new JTextField(25);

JLabel nameLabel = new JLabel("Enter the Course Name : ");
final JTextField nameField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1));
labelPanel.add(idLabel) ;
labelPanel.add(nameLabel);

330

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(idField);
fieldPanel.add(nameField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select CourseTaken",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM CoursesTaken WHERE " +
"MilitarylD =» + »"• +
idField.getTextO + "' AND "

"CourseName =»+"'»+
nameField. getTextO + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next ();

final CourseTakenForm form = new
CourseTakenForm("COURSE-TAKEN FORM");

form.militarylDField.setText(rs.getString(l));
form.courseField.setText(rs.getString(2));
form.startDateField.setText(rs.getString(3));
form.endDateField.setText(rs.getString(4)) ;
form.gradeField.setText(rs.getString(5));

form.militarylDField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()

public voidx actionPerformed(ActionEvent
e)
{

String updateString = "UPDATE
CoursesTaken SET " +
"CourseName = " + "'" +

331

form.startDateField.getText() + "', " +

it t n

form.courseField.getText() + "', "
+

"StartDate = " + •"» +

"EndDate ="+"'»+
form.endDateField.getText()

"Grade = " +
form.gradeField.getText() +

+

+

" WHERE MilitarylD = " + "'"

idField.getText() + "' AND "

"CourseName = " + ""' +
nameField.getText () + ""';

updateQuery(updateString);

form.dispose{);

});

ActionListener(;

+ " ' " +

AND " +

form.deleteButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"CoursesTaken " +
"WHERE MilitarylD = "

idField.getText() + "•

"CourseName = " +

nameField.getText() +

ActionListenerI

updateQuery(deleteString);

form.dispose();

});

form.cancelButton.addActionListener(new

public void actionPerformed(ActionEvent

332

{
form.dispose();

}
});

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch

} // end if

} // end courseTakenUpdateForm()

/**
* Method assignmentUpdateForm retrieves and displays a previous
* assignment record for a person, which can then be modified
* or deleted.
* @param none
* Sreturn void
*/

public void assignmentUpdateForm() {

JPanel getPanel = new JPanelO;
JPanel labelPanel = new JPanelO;
JPanel fieldPanel = new JPanel();

JLabel idLabel = new JLabel("Enter the Military ID : ");
final JTextField idField = new JTextField(25);

JLabel numberLabel = new JLabel("Enter the Assignment Number

final JTextField numberField = new JTextField(25);

333

labelPanel.setLayout(new GridLayout(0, 1)) ;
labelPanel.add(idLabel);
labelPanel.add(numberLabel);

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(idField);
fieldPanel.add(numberField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Previous Assignment",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

String query = "SELECT * FROM Assignments WHERE " +
"MilitarylD = " + "'" +
idField.getText() + "' AND "

"AssignmentNumber = " +
numberField.getText();

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final AssignmentForm form = new AssignmentForm(
"AS SIGNMENT FORM");

form.militarylDField.setText(rs.getString(1));
form.numberField.setText(rs.getString(2)) ;
form.stationField.setText(rs.getString(3)) ;
form.positionField.setText(rs.getString(4));
form.durationField.setText(rs.getString(5));

form.militarylDField.setEditable(false) ;

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

public void actionPerformed(ActionEvent
e)
{

334

Assignments SET " +

', " +

+ "', " +

+ "■, " +

String updateString = "UPDATE

"AssignmentNumber = " +
form.numberField.getText() +

"Station =»+"'»+
form.stationField.getText()

"Position =» + >"» +
form.positionField.getText()

"Duration = " +
form.durationField.getText()

" WHERE MilitarylD = " + "*"

idField.getText() + "' AND "

"AssignmentNumber = " +
numberField.getText{);

updateQuery(updateString);

form.dispose();

});

ActionListener()

AND " +

+

form.deleteButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"Assignments " +
"WHERE MilitarylD = "

idField.getText() + "'

"AssignmentNumber = "

numberField.getText();

updateQuery(deleteString);

form.dispose();

form.cancelButton.addActionListener(new
ActionListener()

335

public void actionPerformed(ActionEvent
e)
{"

form.dispose ();
}

});

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try-

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch

} // end if

} // end assignmentUpdateFormO

* Method languageUpdateForm retrieves and displays a language
* record for a person, which can then be modified or deleted.
* Sparam none

■ * Sreturn void
*/

public void languageUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel idLabel = new JLabel("Enter the Military ID : ");
final JTextField idField = new JTextField(25);

JLabel nameLabel = new JLabel("Enter the Foreign Language

336

final JTextField nameField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1)) ;
labelPanel.add(idLabel) ;
labelPanel.add(nameLabel) ;

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(idField);
fieldPanel.add(nameField) ;

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS));
getPanel.add(labelPanel) ;
getPanel.add(fieldPanel) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialogtthis, getPanel,
"Select Foreign Language",
JOptionPane.YES_NO_CÄNCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

String query = "SELECT * FROM ForeignLanguages WHERE " +
"MilitarylD = " + "'" +
idField.getTextO + "' AND "

"Language = " + "'" +
nameField. getTextO + ""';

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next ();

))

final LanguageForm form = new LanguageForm(
"LANGUAGE FORM");

form.militarylDField.setText(rs.getString(l));

form.languageField.setSelectedltem(rs.getString

form.degreeField.setSelectedItem(rs.getString(3

form.militarylDField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

337

e)
public void actionPerformed(ActionEvent

{

ForeignLanguages" +

form.languageField.getSelectedltemO +

form.degreeField.getSelectedltemO + "'" +

String updateString = "UPDATE

" SET Language = " + "'" +

IF i IT i ii + "Degree = " + "'" +

+

+

" WHERE MilitarylD = " + ""'

idField.getText() + "' AND "

"Language ="+»'»+
nameField.getText(} + "'";

updateQuery(updateString);

form.dispose();

});

ActionListener()

+ "■" +

AND " +

form.deleteButton.addActionListener(new

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"ForeignLanguages " +
"WHERE MilitarylD = "

idField.getText() + "*

"Language = " + "'" +
nameField.getText() +

updateQuery(deleteString) ;

form.dispose();

});

ActionListener()
form.cancelButton.addActionListener(new

338

public void actionPerformed(ActionEvent
e)
{

}
form.dispose();

})

else.{
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end languageUpdateFormO

/*
* Method eventUpdateForm retrieves and displays an exercise
* event record, which can then be modified or deleted.
* @param none
* Sreturn void
*/

public void eventUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

JLabel exerciseLabel = new JLabel("Enter the Exercise Name
final JTextField exerciseField = new JTextField(25);

JLabel eventLabel = new JLabel("Enter the Event Name : ");

339

");

final JTextField eventField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1));
labelPanel.add(exerciseLabel);
labelPanel.add(eventLabel);

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(exerciseField);
fieldPanel.add(eventField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS)) ;
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Exercise Event",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

String query = "SELECT * FROM Events WHERE " +
"ExerciseName = " + ""' +
exerciseField.getText() + "'
AND " +
"EventName = " + "•" +
eventField.getText() + "'";

ResultSet rs = selectQuery(query) ;

try {
if (rs != null) {

rs.next();

final EventForm form = new EventForm(
"EXERCISE/EVENT FORM");

form.exerciseField.setText(rs.getString(1)) ;
form.eventField.setText(rs.getString(2)) ;

form.typeField.setSelectedItem(rs.getString(3))

form.numberField.setText(rs.getString(4)) ;
form.durationField.setText(rs.getString(5));

form.exerciseField.setEditable(false);

form.addButton.setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()
{

340

Events SET " +

rr i if

form.typeField.getSelectedltemO + "', " +

public void actionPerformed(ActionEvent
e)
{

String updateString = "UPDATE

"EventName =»+»•»+
form.eventField.getText() +

"EventType = " + "'" +

"NumberOfEvents = " +
form.numberField.getText() +

"EventDuration = " +
form.durationField.getText()

it i ti _j_

AND " +

ActionListener()

e)

});

" WHERE ExerciseName = " +

exerciseField.getText() + "

"EventName = " + "'" +
eventField.getText () + *"";

updateQuery(updateString);

form.dispose();

form.deleteButton.addActionListener(new

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"Events " +
"WHERE ExerciseName =

ii j. H i ii

exerciseField.getTextO + *" AND " +
"EventName =»+"•"+
eventField.getText() +

});

updateQuery(deleteString);

form.dispose();

341

form.cancelButton.addActionListener(new
ActionListener()

{
public void actionPerformed(ActionEvent

e)

{
form.dispose();

}
' >) '•

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end eventUpdateFormO

* Method visitUpdateForm retrieves and displays a port visit
* record, which can then be modified or deleted.
* @param none
* @return void
*/

public void visitUpdateForm() {

JPanel getPanel = new JPanel();
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel() ;

JLabel exerciseLabel = new JLabel("Enter the Exercise Name :

342

AND

final JTextField exerciseField = new JTextField(25);

JLabel portLabel = new JLabel("Enter the Port Name : ");
final JTextField portField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1));
labelPanel.add(exerciseLabel);
labelPanel.add(portLabel);

fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(exerciseField);
fieldPanel.add(portField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS));
getPanel.add(labelPanel);
getPanel.add(fieldPanel);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Port Visit",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, opt i onName s,
optionNames[0]) ==0) {

String query = "SELECT * FROM PortVisits WHERE " +
"ExerciseName =» + »"• +
exerciseField. getTextO + '"

"PortName = " + "'" +
portField. getTextO + "'";

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final PortVisitForm form = new PortVisitForm(
"PORT VISIT FORM");

form.exerciseField. setText(rs.getString(l));
form.portField.setText(rs.getString (2)) ;
form.startDateField. setText(rs.getString(3));
form.endDateField.setText(rs.getString(4));
form.durationField.setText(rs.getString (5));

form.exerciseField.setEditable(false);

form.addButton. setEnabled(false);

form.updateButton.addActionListener(new
ActionListener()

343

PortVisits SET " +

fr i 11

public void actionPerformed(ActionEvent
e)

{
String updateString = "UPDATE

"PortName = " + "'" +
" form.portField.getText() +

form.startDateField.getText() + "', " +

it i ii

"VisitStartDate = " + "'" +

"VisitEndDate = " + "'" +
form.endDateField.getText()

"VisitDuration = " +
form.durationField.getTexti

H i H i

AND " +

ActionListener()

});

" WHERE ExerciseName = " +

exerciseField.getText() + "'

"PortName = " + *"" +
portField.getText() + "'";

updateQuery(updateString);

form.dispose();

form.deleteButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"PortVisits " +
"WHERE ExerciseName =

II J. H i II i

exerciseField.getText() + "' AND " +
"PortName =»+»'»+
portField.getText() +

updateQuery(deleteString);

form.dispose();

});

344

form.cancelButton.addActionListener(new
ActionListener()

e)

{
public void actionPerformed(ActionEvent

{
form.dispose();

}
});

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE);

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch

} // end if

} // end visitUpdateFormO

/**
* Method failureUpdateForm retrieves and displays an equipment
* failure record, which can then be modified or deleted.
* Sparam none
* ©return void
*/

public void failureUpdateForm() {

JPanel getPanel = new JPanel{);
JPanel labelPanel = new JPanel();
JPanel fieldPanel = new JPanel();

345

AND

JLabel equipmentLabel = new JLabel("Enter the Serial Number : ") ;
final JTextField equipmentField = new JTextField(25);

JLabel numberLabel = new JLabel("Enter the Failure Number : ");
final JTextField numberField = new JTextField(25);

labelPanel.setLayout(new GridLayout(0, 1));
labelPanel.add(equipmentLabel);
labelPanel.add(numberLabel);

fieldPanel.setLayout (new GridLayout(0, 1)) ;
fieldPanel.add(equipmentField);
fieldPanel.add(numberField);

getPanel.setLayout(new BoxLayout(getPanel, BoxLayout.X_AXIS)) ;
getPanel.add(labelPanel) ;
getPanel.add(fieldPanel) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Equipment Failure",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

String query = "SELECT * FROM Failures WHERE " +
"SerialNumber = " + "'" +
equipmentField.getText() + "'

"FailureNumber = " +
numberField.getText();

ResultSet rs = selectQuery(query);

try {
if (rs != null) {

rs.next();

final FailureForm form = new FailureForm(
"EQUIPMENT FAILURE FORM");

form.serialField.setText(rs.getString(1));
form.failureField.setText(rs.getString(2));
form.descriptionField.setText(rs.getString(3));
form.diagnosisField.setText(rs.getString(4));
form.dateField.setText(rs.getString(5));
form.durationField.setText(rs.getString(6));

form.serialField.setEditable(false);

form.addButton.setEnabled(false);

346

ActionListener()

e)

Failures SET " +

+ ", " +

ii i ft i

form.updateButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
String updateString = "UPDATE

"FailureNumber = " +
form.failureField.getText()

"FailureDescription = " +

form.descriptionField.getText() +"',"+

+

form.diagnosisField.getText() + "', " +

H i H

II i II i II "FailureDiagnosis = " +

"FailureDate = » + '"» +
form.dateField.getText() +

"FailureDuration = " +
form.durationField.getText()

"' AND " +

" WHERE SerialNumber = " +

equipmentField.getText() +

"FailureNumber = " +
numberField.getText() ;

updateQuery(updateString);

form.dispose();

});

ActionListener()

e)

form.deleteButton.addActionListener(new

public void actionPerformed(ActionEvent

{
String deleteString = "DELETE FROM " +

"Failures " +
"WHERE SerialNumber =

equipmentField.getText() + "' AND " +
"FailureNumber = " +
numberField.getText()

347

ActionListener()

e)

updateQuery(deleteString) ;

form.dispose();
}

});

form.cancelButton.addActionListener(new

{
public void actionPerformed(ActionEvent

{
form.dispose();

}
});

}

else {
JOptionPane.showMessageDialog(this,

"Unable to find record in
database",
"Record Not Found",
JOptionPane.ERROR_MESSAGE) ;

} // end if

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR_MESSAGE) ;

} // end catch

} // end if

} // end failureUpdateForm()

/**

* Method divisionReport retrieves information about the divisions
* under each department.
* @param none
* @return void
*/

348

public void divisionReport() {

JFrame reportFrame = new JFrame("DIVISION REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray) ;

JPanel labelPanel = new JPanel();
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

JLabel departmentLabel = new JLabel("DEPARTMENT",
SwingConstants.CENTER);

departmentLabel.setFont(labelFont);

JLabel divisionLabel = new JLabel("DIVISION",
SwingConstants.CENTER);

divisionLabel.setFont(labelFont);

JLabel officerLabel = new JLabel("OFFICERS",
SwingConstants.CENTER);

officerLabel.setFont(labelFont);

JLabel pettyLabel = new JLabel("PETTY OFFICERS",
SwingConstants.CENTER);

pettyLabel.setFont(labelFont);

JLabel enlistedLabel = new JLabel("ENLISTED",
SwingConstants.CENTER);

enlistedLabel.setFont(labelFont);

labelPanel.add(departmentLabel);
labelPanel.add(divisionLabel) ;
labelPanel.add(officerLabel) ;
labelPanel.add(pettyLabel);
labelPanel.add(enlistedLabel);

String query = "SELECT * FROM DivisionQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanel()
{

public void paint(Graphics g)
{

int yPos = 30;
String department = " ";

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getString(l);

349

yPos)

yPos)

yPos),

yPos),

yPos);

yPos);

yPos);

yPos);

};

if (str.equals(department) == false) {
department = str;
yPos += 10;

g.drawstring(str, 10, yPos);
g.drawString(rs.getString(2), 190,

g.drawString(rs.getString(3), 410,

g.drawstring(rs.getString(4), 550,

g.drawstring(rs.getString(5) , 720,

yPos += 30;
}
else {

g.drawString(rs.getString(2), 190,

g.drawstring(rs.getString(3), 410,

g.drawString(rs.getString(4), 550,

g.drawstring(rs.getString(5), 720,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane().setLayout(new BorderLayout());
reportFrame.getContentPane().add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show();

} // end divisionReport()

350

* Method overhaulReport retrieves information about the
* overhauls of the ship.
* @parara none
* @return void
*/

public void overhaulReport() {

JFrame reportFrame = new JFrame("OVERHAUL REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize{800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

JLabel numberLabel = new JLabel("OVERHAUL",

SwingConstants.CENTER); '
numberLabel.setFont(labelFont);

JLabel startLabel = new JLabel("START DATE",

SwingConstants.CENTER);
startLabel.setFont(labelFont);

JLabel endLabel = new JLabel("END DATE",

SwingConstants.CENTER) ;
endLabel.setFont(labelFont);

JLabel shipyardLabel = new JLabel("SHIPYARD",

SwingConstants.CENTER);
shipyardLabel.setFont(labelFont);

labelPanel.add(numberLabel);
labelPanel.add(startLabel);
labelPanel.add(endLabel);
labelPanel.add(shipyardLabel);

String query = "SELECT * FROM OverhaulQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanel()
{

public void paint(Graphics g)

351

int yPos = 4 0;
try {

while(rs.next()) {
g.setFont(textFont);

g.drawString(rs.getString(l) , 70, yPos);
g.drawstring(rs.getString(2), 200, yPos)
g.drawString(rs.getString(3), 400, yPos)
g.drawstring(rs.getString(4), 550, yPos)
yPos +=40;

} // end while
} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch
} // end paint()

};

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane().setLayout(new BorderLayout());
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show() ;

} // end overhaulReport()

/**

Method trainingReport retrieves information about the courses
taken by the personnel. *

* @param none
* Sreturn void
*/

public void trainingReport() {

JFrame reportFrame = new JFrame("TRAINING REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

352

JLabel firstLabel = new JLabel("FIRST NAME",

SwingConstants.CENTER);
firstLabel.setFont(labelFont) ;

JLabel lastLabel = new JLabel("LAST NAME",

SwingConstants.CENTER);
lastLabel.setFont(labelFont);

JLabel courseLabel = new JLabel("COURSE NAME",

SwingConstants.CENTER) ;
courseLabel.setFont(labelFont);

JLabel gradeLabel = new JLabel("GRADE",

SwingConstants.CENTER);
gradeLabel.setFont(labelFont) ;

labelPanel.add(firstLabel) ;
labelPanel.add(lastLabel) ;
labelPanel.add(courseLabel);
labelPanel.add(gradeLabel);

String query = "SELECT * FROM TrainingQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanel()
{

public void paint(Graphics g)
{

int yPos = 30;
String militarylD = " ";

try {
while(rs.next ()) {

g.setFont(textFont);
String str = rs.getString(l);

if (str.equals(militarylD) == false) {
militarylD = str;
yPos += 10;

g.drawString(rs.getString(2), 20, yPos);
g.drawString(rs.getString(3), 210,

yPos)

yPos)

yPos)

g.drawString(rs.getString(4) , 400,

g.drawString(rs.getString(5), 700,

353

yPos)

yPos)

yPos += 30;
}
else {

g.drawstring(rs.getString(4), 400,

g.drawstring(rs.getString(5), 700,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame. ge.tContentPane () . setLayout (new BorderLayout ());
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane() .add(pane, BorderLayout.CENTER) ;
reportFrame.show();

} // end trainingReport ()

/**

* Method assignmentReport retrieves information about the
* previous assignments of the personnel.
* @param none
* @return void
*/

public void assignmentReport() {

JFrame reportFrame = new JFrame("ASSIGNMENT REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanelO;
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

JLabel firstLabel = new JLabel("FIRST NAME",

354

SwingConstants.CENTER);
firstLabel.setFont(labelFont);

JLabel lastLabel = new JLabel("LAST NAME",

SwingConstants.CENTER);
lastLabel.setFont(labelFont);

JLabel stationLabel = new JLabel("STATION",

SwingConstants.CENTER);
stationLabel.setFont(labelFont);

JLabel positionLabel = new JLabel("POSITION",

SwingConstants.CENTER);
positionLabel.setFont(labelFont);

labelPanel.add(firstLabel);
labelPanel.add(lastLabel);
labelPanel.add(stationLabel);
labelPanel.add(positionLabel);

String query = "SELECT * FROM AssignmentQuery";

final ResultSet rs = selectQuery(query) ;

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanel()
{

public void paint(Graphics g)
{

int yPos =30;
String militarylD = " ";

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getStririg(1);

if (str.equals(militarylD) == false) {
militarylD = str;
yPos += 10;

g.drawString(rs.getString(2), 20, yPos);
g.drawString(rs.getString(3), 200,

yPos);

yPos);

yPos);

g.drawString(rs.getString(4), 380,

g.drawString(rs.getString(5) , 600,

yPos += 30;

355

yPos)

yPos)

}
else {

g.drawString(rs.getString(4), 380,

g.drawstring(rs.getString(5), 600,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE); .

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel) ;

reportFrame.getContentPane().setLayout(new BorderLayout()) ;
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show();

} // end assignmentReport()

* Method languageReport retrieves information about the
* foreign languages known by the personnel.
* @param none
* Sreturn void
*/

public void languageReport() {

JFrame reportFrame = new JFrame("LANGUAGE REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanelO;
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0)) ;

JLabel firstLabel = new JLabel("FIRST NAME",

356

SwingConstants.CENTER);
firstLabel.setFont(labelFont);

JLabel lastLabel = new JLabel("LAST NAME",
SwingConstants.CENTER);

lastLabel.setFont(labelFont);

JLabel languageLabel = new JLabel("LANGUAGE",

SwingConstants.CENTER);
languageLabel.setFont(labelFont);

JLabel degreeLabel = new JLabel("DEGREE",

SwingConstants.CENTER);
degreeLabel.setFont(labelFont);

labelPanel.add(firstLabel) ;
labelPanel.add(lastLabel);
labelPanel.add(languageLabel);
labelPanel.add(degreeLabel);

String query = "SELECT * FROM LanguageQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanel()
{

public void paint(Graphics g)
{

int yPos = 30;
String militarylD =

yPos)

yPos)

yPos)

 ii ii,

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getString(1);

if (str.equals(militarylD) == false) {
militarylD = str;
yPos += 10;

g.drawstring(rs.getString(2), 20, yPos);
g.drawstring(rs.getString(3), 200,

g.drawstring(rs.getString(4), 420,

g.drawstring(rs.getString(5), 680,

yPos += 30;

357

yPos)

yPos)

else {
g.drawString(rs.getString(4), 420,

g.drawstring(rs.getString(5), 680,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane().setLayout(new BorderLayout());
reportFrame.getContentPane().add(labelPanel, BorderLayout.NORTH) ;
reportFrame.getContentPane().add(pane,. BorderLayout.CENTER);
reportFrame.show();

} // end-languageReport()

* Method eventReport retrieves information about the events
* executed during the exercises.
* @param none
* Sreturn void
*/

public void eventReport() {

JFrame reportFrame = new JFrame("EXERCISE/EVENT REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

JLabel exerciseLabel = new JLabel("EXERCISE NAME",
SwingConstants.CENTER);

exerciseLabel.setFont(labelFont);

358

yPos)

yPos)

yPos)

JLabel eventLabel = new JLabel("EVENT NAME",

SwingConstants.CENTER);
eventLabel.setFont(labelFont);

JLabel typeLabel = new JLabel("EVENT TYPE",

SwingConstants.CENTER);
typeLabel.setFont(labelFont);

JLabel durationLabel = new JLabel("DURATION(Hours)",

SwingConstants.CENTER);
durationLabel.setFont(labelFont);

labelPanel.add(exerciseLabel);
labelPanel.add(eventLabel);
labelPanel.add(typeLabel);
labelPanel.add(durationLabel);

String query = "SELECT * FROM EventQuery";

final ResultSet rs '= selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPanelO
{

public void paint(Graphics g)
. {

int yPos = 30;
String exercise = " ";

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getString(l);

if (str.equals(exercise) == false) {
exercise = str;
yPos += 10;

g.drawString(str, 20, yPos);
g.drawstring(rs.getString(2), 200,

g.drawString(rs.getString(3), 400,

g.drawString(rs.getString(4), 690,

yPos +=30;
}
else {

359

yPos)

yPos)

yPos)

g.drawString(rs.getString(2), 200,

g.drawString(rs.getString(3), 400,

g.drawstring(rs.getString(4), 690,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel) ;

reportFrame.getContentPane().setLayout(new BorderLayout()) ;
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show();

} // end eventReport()

* Method visitReport retrieves information about the port visits
* made during the exercises.
* Sparam none
* @return void
*/

public void visitReport() {

JFrame reportFrame = new JFrame("PORT VISIT REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanelO;
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

JLabel exerciseLabel = new JLabel("EXERCISE NAME",

360

yPos) ;

yPos) ;

yPos) ;

SwingConstants.CENTER) ;
exerciseLabel.setFont(labelFont) ;

JLabel portLabel = new JLabel("PORT NAME",

SwingConstants.CENTER) ;
portLabel.setFont(labelFont) ;

JLabel startLabel = new JLabel("START DATE",

SwingConstants.CENTER);
startLabel.setFont(labelFont) ;

JLabel endLabel = new JLabel("END DATE",

SwingConstants.CENTER) ;
endLabel.setFont(labelFont) ;

labelPanel.add(exerciseLabel) ;
labelPanel.add(portLabel) ;
labelPanel.add(startLabel);
labelPanel.add(endLabel);

String query = "SELECT * FROM VisitQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if

JPanel textPanel = new JPaneK)

public void paint(Graphics g)
{

int yPos = 30;
String exercise = " ";

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getString(l);

if (str.equals(exercise) == false) {
exercise = str;
yPos += 10;

g.drawString(str, 20, yPos) ;
g.drawString(rs.getString(2), 230,

g.drawstring(rs.getString(3), 430,

g.drawString(rs.getString(4), 650,

yPos += 30;

361

yPos)

yPos)

yPos)

}
else {

g.drawstring(rs.getString(2) , 230,

g.drawString(rs.getString(3), 430,

g.drawstring(rs.getString(4), 650,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane..showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane().setLayout(new BorderLayout());
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH)
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show() ;

} // end visitReport()

* Method failureReport retrieves information about the failures
* of equipment.
* Sparam none
* @return void
*/

public void failureReport() {

JFrame reportFrame = new JFrame("EQUIPMENT-FAILURE REPORT");
reportFrame.setSize(800, 600);
reportFrame.setBackground(Color.lightGray);

JPanel labelPanel = new JPanel();
labelPanel.setSize(800, 100);
labelPanel.setLayout(new GridLayout(1, 0));

362

yPos)

yPos)

yPos)

JLabel equipmentLabel = new JLabel("EQUIPMENT NAME",

SwingConstants.CENTER) ;
equipmentLabel.setFont(labelFont);

JLabel typeLabel = new JLabel("EQUIPMENT TYPE",

SwingConstants.CENTER);
typeLabel.setFont(labelFont);

JLabel descriptionLabel = new JLabel("FAILURE",

SwingConstants.CENTER) ;
descriptionLabel.setFont(labelFont) ;

JLabel durationLabel = new JLabel("DURATION(Hours)",

SwingConstants.CENTER) ;
durationLabel.setFont(labelFont);

labelPanel.add(equipmentLabel);
labelPanel.add(typeLabel);
labelPanel.add(descriptionLabel);
labelPanel.add(durationLabel);

String query = "SELECT * FROM FailureQuery";

final ResultSet rs = selectQuery(query);

if (rs == null) {
return;

} // end if.

JPanel textPanel = new JPanelO

public void paint(Graphics g)
{

int yPos =30;
String equipment = " ";

try {
while(rs.next()) {

g.setFont(textFont);
String str = rs.getString(1);

if (str.equals(equipment) == false) {
equipment = str;
yPos += 10;

g.drawString(str, 20, yPos);
g.drawstring(rs.getString(2), 200,

g.drawString(rs.getString(3), 420,

g.drawString(rs.getString(4), 700,

363

yPos)

yPos)

yPos += 30;
}
else {

g.drawstring(rs.getString(3), 420,

g.drawstring(rs.getString(4), 700,

yPos += 30;

} // end if
} // end while

} // end try

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage() ,
"SQL ERROR",
JOptionPane.ERROR MESSAGE);

} // end catch
} // end paint()

JScrollPane pane = new JScrollPane();
pane.setViewportView(textPanel);

reportFrame.getContentPane().setLayout(new BorderLayout());
reportFrame.getContentPaneO.add(labelPanel, BorderLayout.NORTH);
reportFrame.getContentPane().add(pane, BorderLayout.CENTER);
reportFrame.show();

} // end failureReport()

/**

* Method courseToTakeQuery retrieves information about the courses
* that should be taken by the personnel.
* @param none
* Sreturn void
*/

public void courseToTakeQuery() {

JLabel nameLabel = new JLabel("Enter the Last Name : ") ;
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanelO;
getPanel.add(nameLabel);
getPanel.add(nameField);

String[] optionNames = { "OK", "Cancel" };

364

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTIQN_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());

dbadapter.connect();

String query = "SELECT * FROM CourseToTakeQuery WHERE " +
"LastName =» + •"» +
nameField.getText() + "'";

dbadapter.executeQuery(query);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel) ;

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1) ;
cellSpacingSlider.getAccessibleContext() .

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

365

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
. >);

JFrame frame = new JFrame("COURSES TO TAKE QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH) ;
frame.show();

} // end if

} // end courseToTakeQueryl

/**

* Method courseTakenQuery retrieves information about the courses
* that were taken by the personnel.
* Sparam none
* @return void
*/

public void courseTakenQuery() {

JLabel nameLabel = new JLabel("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel() ;
getPanel.add(nameLabel) ;
getPanel.add(nameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,

366

"Select Personnel",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
nul1, opt i onName s,
optionNames[0]) == 0) .{

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURLO,

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());

dbadapter.connect() ;

String query = "SELECT * FROM CourseTakenQuery WHERE " +
"LastName =»+»'»+
nameField.getText() + "'";

dbadapter.executeQuery(query);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = '((JSlider) e.getSource ()) .getValue () ;

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

367

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext() .

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider) ;
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{ ' •

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue() ;

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("COURSES TAKEN QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray) ;
frame.getContentPane().setLayout(new BorderLayout() };
frame.getContentPaneO.add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH);
frame.show();

} // end if

} // end courseTakenQuery(]

* Method assignmentQuery retrieves information about the previous
* assignments of the personnel.
* dparam none
* @return void
*/

public void assignmentQuery() {

JLabel nameLabel = new JLabel("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanel();
getPanel.add(nameLabel);
getPanel.add(nameField);

Stringf] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel",

368

JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
nul1, opt i onName s,
optionNames[0]) ==0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURLO ,

connectionPanel.getDriver(),

connectionPanel.getüserlD(),

connectionPanel.getPassword());
dbadapter.connect() ;

String query = "SELECT * FROM PreviousQuery WHERE " +
"LastName =»+»<»+
nameField.getTextO + '"";

dbadapter.executeQuery(query) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext ().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue() ;

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

369

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height) ;
table.repaint();

}
}) ;

JFrame frame = new JFrame("PREVIOUS ASSIGNMENTS QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout()) ;
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH);
frame.show();

} // end if

} // end assignmentQuery()

/**

* Method languageQuery retrieves information about the foreign
* languages known by the personnel.
* @param none
* Sreturn void
*/

public void languageQuery() {

JLabel nameLabel = new JLabel("Enter the Last Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanelO;
getPanel.add(nameLabel);
getPanel.add(nameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Personnel",
JOptionPane.YES_NO_CANCEL_OPTION,

370

JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) ==0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver() ,

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String query = "SELECT * FROM ForeignQuery WHERE " +
"LastName =» + »"' +
nameField.getText () + '"";

dbadapter.executeQuery(query);

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(
J

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider) ;

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource(}).getValue();

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}

>>;

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);

371

rowHeightSlider.getAccessibleContext ().
setAccessibleName("Row Height");

rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("FOREIGN LANGUAGE QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH);
frame.show();

} // end if

} // end languageQueryO

/**

* Method eventQuery retrieves information about the events
* executed during the exercises.
* @param none
* ©return void
*/

public void eventQuery() {

JLabel nameLabel = new JLabel("Enter the Exercise Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanelO;
getPanel.add(nameLabel) ;
getPanel.add(nameField) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Exercise",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,

372

optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(},

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect();

String query = "SELECT * FROM EventQuery WHERE " +
"ExerciseName = » + »"< +
nairieField.getTextO + "'";

dbadapter.executeQuery(query) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanel();

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1) ;
cellSpacingSlider.getAccessibleContext().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint ();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel) ;

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext ().

setAccessibleName("Row Height");

373

rowHeightLabel.setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider) ;

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint {);

}
});

JFrame frame = new JFrame ("EXERCISE/EVENT QUERY");
frame.setSize (800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add (controlPanel,
BorderLayout.NORTH) ;
frame.show();

} // end if

} // end eventQuery(

* Method visitQuery retrieves information about the port visits
* made during the exercises.
* Sparam none
* Sreturn void
*/

public void visitQuery() {

JLabel nameLabel = new JLabel("Enter the Exercise Name : ");
JTextField nameField = new JTextField(25) ;

JPanel getPanel = new JPanel();
getPanel.add(nameLabel);
getPanel.add(nameField);

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialog(this, getPanel,
"Select Exercise",
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

374

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPasswordO);
dbadapter.connect();

String query = "SELECT * FROM VisitQuery WHERE " +
"ExerciseName =»+"'"+
nameField.getTextO + ""';

dbadapter.executeQuery(query) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanel{);

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1);
cellSpacingSlider.getAccessibleContext().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(cellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel.setLabelFor(rowHeightSlider),•
controlPanel.add(rowHeightSlider) ;

375

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{

. int height = ((JSlider) e.getSource()).getValue();
table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("PORT VISIT QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout()) ;
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH);
frame.show();

}.// end if

} // end visitQueryd

* Method failureQuery retrieves information about the failures
* of equipment.
* @param none
* @return void
*/

public void failureQuery() {

JLabel nameLabel = new JLabel("Enter the Equipment Name : ");
JTextField nameField = new JTextField(25);

JPanel getPanel = new JPanelO;
getPanel.add(nameLabel) ;
getPanel.add(nameField) ;

String[] optionNames = { "OK", "Cancel" };

if (JOptionPane.showOptionDialogfthis, getPanel,
"Select Equipment", .
JOptionPane.YES_NO_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE,
null, optionNames,
optionNames[0]) == 0) {

JDBCAdapter dbadapter;
dbadapter = new JDBCAdapter(connectionPanel.getURL(),

376

connectionPanel.getDriver(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());
dbadapter.connect() ;

String query = "SELECT * FROM EquipmentFailureQuery WHERE "
+ "EquipmentName = " + "'" +
nameField.getText() + "'";

dbadapter.executeQuery(query) ;

final JTable table = new JTable(dbadapter);

JScrollPane scrollPane = new JScrollPane(table);

JPanel controlPanel = new JPanelO;

JLabel cellSpacingLabel = new JLabel("Inter-Cell Spacing");
controlPanel.add(cellSpacingLabel);

JSlider cellSpacingSlider = new JSlider(

JSlider.HORIZONTAL, 0, 10, 1) ;
cellSpacingSlider.getAccessibleContext ().

setAccessibleName("Inter-Cell Spacing");
cellSpacingLabel.setLabelFor(CellSpacingSlider);
controlPanel.add(cellSpacingSlider);

cellSpacingSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int spacing = ((JSlider) e.getSource()).getValue();

table.setlntercellSpacing(new
Dimension(spacing, spacing));
table.repaint();

}
});

JLabel rowHeightLabel = new JLabel("Row Height");
controlPanel.add(rowHeightLabel);

JSlider rowHeightSlider = new JSlider(

JSlider.HORIZONTAL, 5, 100, 20);
rowHeightSlider.getAccessibleContext().

setAccessibleName("Row Height");
rowHeightLabel. setLabelFor(rowHeightSlider);
controlPanel.add(rowHeightSlider);

377

rowHeightSlider.addChangeListener(new ChangeListener()
{

public void stateChanged(ChangeEvent e)
{
int height = ((JSlider) e.getSource()).getValue();

table.setRowHeight(height);
table.repaint();

}
});

JFrame frame = new JFrame("EQUIPMENT FAILURE QUERY");
frame.setSize(800, 600);
frame.setBackground(Color.lightGray);
frame.getContentPane().setLayout(new BorderLayout());
frame.getContentPane().add(scrollPane, BorderLayout.CENTER

frame.getContentPane().add(controlPanel,
BorderLayout.NORTH);
frame.show();

} // end if

} // end failureQuery()

/**

* Method showQueryWindow creates and displays a window for writing
* SQL queries and fetching query results from the database.
* @param none
* @return void
*/

public void showQueryWindow() {

Color labelColor = new Color(144, 216, 234);
Font labelFont = new Font("Serif", Font.BOLD, 16);
Font areaFont = new Font("Serif", Font.PLAIN, 14);

if (queryFrame == null) {

// Create the query labels
selectLabel = new JLabel("SELECT");
selectLabel.setBackground(labelColor);
selectLabel.setFont(labelFont);

fromLabel - new JLabel("FROM");
fromLabel.setBackground(labelColor);
fromLabel.setFont(labelFont);

whereLabel = new JLabel("WHERE");
whereLabel.setBackground(labelColor);
whereLabel.setFont(labelFont);

378

groupLabel = new JLabel("GROUP BY");
groupLabel.setBackground(labelColor);
groupLabel.setFont(labelFont);

havingLabel = new JLabel("HAVING");
havingLabel.setBackground(labelColor) ;
havingLabel.setFont(labelFont);

orderLabel = new JLabel("ORDER BY"); • •
orderLabel.setBackground(labelColor) ;
orderLabel.setFont(labelFont);

// Create the query text areas
selectArea =• new JTextArea(" ", 2, 30);
selectArea.setFont(areaFont);
fromArea = new JTextAreaC ", 2, 30);
fromArea.setFont(areaFont) ;
whereArea = new JTextAreaC ", 2, 30);
whereArea.setFont(areaFont);
groupArea = new JTextAreaC ", 2, 30);
groupArea.setFont(areaFont);
havingArea = new JTextAreaC ", 2, 30);
havingArea.setFont(areaFont);
orderArea = new JTextAreaC ", 2, 30);
orderArea.setFont(areaFont);

fetchButton = new JButton("RUN QUERY");
fetchButton.setFont(labelFont);
fetchButton.setBackground(labelColor);

leftPanel = new JPanelO;
leftPanel.setLayout(new GridLayout(0, 1));
leftPanel.setSize(200,- 600);
leftPanel.setLocation(0, 0);

leftPanel.add(selectLabel);
leftPanel.add(selectArea) ;
leftPanel.add(fromLabel);
leftPanel.add(fromArea);
leftPanel.add(whereLabel);
leftPanel.add(whereArea) ;
leftPanel.add(groupLabel);
leftPanel.add(groupArea);
leftPanel.add(havingLabel);
leftPanel.add(havingArea);
leftPanel.add(orderLabel);
leftPanel.add(orderArea);
leftPanel.add(fetchButton);

fetchButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

String query = "SELECT " + selectArea.getText()

379

!= 0) {

whereText);

0) {

groupText) ;

!= 0) {

havingText);

!= 0) {

orderText);

" FROM " + fromArea.getT'extO ;
String whereText = whereArea.getText();
String groupText = groupArea.getText();
String havingText = havingArea.getText();
String orderText = orderArea.getText();
String emptyString = " ";

if (whereText.compareToIgnoreCase(emptyString)

query = query.concat(" WHERE " +

}

if (groupText.compareToIgnoreCase(emptyString) !=

query = query.concat(" GROUP BY " +

}

if (havingText.compareToIgnoreCase(emptyString)

query = query.concat(" HAVING " +

}

if (orderText.compareToIgnoreCase(emptyString)

query = query.concat(" ORDER BY " +

}

dataBase.executeQuery(query);

});

// Create the table scrollpane
dataBase = new JDBCAdapter(connectionPanel.getURL(),

connectionPanel.getDriver(),
connectionPanel.getUserlD(),
connectionPanel.getPasswordO);

dataBase.connect();

JTable table = new JTable(dataBase);

tableAggregate = new JScrollPane(table);
tableAggregate.setBorder(new BevelBorder(BevelBorder.LOWERED));
tableAggregate.setSize(600, 600);
tableAggregate.setLocation(200, 0);

// Add all components to the query panel
queryPanel = new JPanelO;
queryPanel.setLayout(null);
queryPanel.add(leftPanel) ;

380

queryPanel.add(tableAggregate);

// Create a frame and put the queryPanel on it
queryFrame = new JFrame("QUERY WINDOW");
queryFrame.setSize(800, 600);
queryFrame. setBackground (Color. lightGray)' ;
queryFrame.getContentPane().add(queryPanel);

queryFrame.addWindowListener(new WindowAdapter(;
{

public void windowClosing(WindowEvent e)
{

queryFrame.removeNotify();
}

});

queryFrame.show();
}

//A queryFrame already exists, just make it visible
else {

queryFrame.setVisible(true);

} // end if

} // end showQueryWindow()

/**
* Method updateQuery executes an update operation.
* @param none
* @return void
*/

public void updateQuery (String query) {

try {
Class.forName(connectionPanel.getDriver());

}

catch (ClassNotFoundException cnf) {
System.err.println("Can not find database driver classes");
System.err.println(cnf);

}

try {
. Connection connection = DriverManager.getConnection (

connectionPanel.getURL(),

connectionPanel.getUserlD(),

381

connectionPanel.getPassword()) ;

Statement statement = connection.createStatement();
statement.executeUpdate(query);
statement.close();
connection.close();

}

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERROR_MESSAGE);

}

} // end updateQuery()

* Method selectQuery executes a query and returns the result.
* @param none
* @return void
*/

public ResultSet selectQuery (String query) {

try {
Class.forName(connectionPanel.getDriver());

}

catch (ClassNotFoundException cnf) {
' System.err.println("Can not find database driver classes");
System.err.println(cnf);
return null;

}

try {' '
Connection connection = DriverManager.getConnection(

connectionPanel.getURL(),

connectionPanel.getUserlD(),

connectionPanel.getPassword());

Statement statement = connection.createStatement();

ResultSet rs = statement.executeQuery(query);

return rs;

382

catch (SQLException e) {
JOptionPane.showMessageDialog(this,

"SQL Exception : " +
e.getMessage(),
"SQL ERROR",
JOptionPane.ERRQR_MESSAGE);

return null;

} // end selectQuery()

} // end class POETApplication

383

import j avax.swing.*;
import java.awt.*;

/**

* The ConnectionPanel class inherits from the JPanel class and
* implements a graphical user interface for the connections to
* the POET Database.
*

* @author LTJG. Yuksel Can
*/

public class ConnectionPanel extends JPanel {

JLabel userNameLabel;
JTextField userNameField;
JLabel passwordLabel;
JPasswordField passwordField;
JPanel namePanel;
JPanel fieldPanel;
String server;
String driver;

public ConnectionPanel() {

server = "jdbc:odbc:POETDB";
driver = "sun.jdbc.odbc.JdbcOdbcDriver";

userNameLabel = new JLabel("USER NAME ", JLabel.RIGHT);
userNameField = new JTextField(15);

passwordLabel = new JLabel("PASSWORD ", JLabel.RIGHT);
passwordField = new JPasswordField(15);

namePanel = new JPanel();
namePanel.setLayout(new GridLayout(0, 1));
namePanel.add(userNameLabel);
namePanel.add(passwordLabel);

fieldPanel = new JPanel();
fieldPanel.setLayout(new GridLayout(0, 1));
fieldPanel.add(userNameField);
fieldPanel.add(passwordField);

setLayout(new BoxLayout(this, BoxLayout.X_AXIS));

add(namePanel);
add(fieldPanel);

} // end ConnectionPanel()

384

public String getUserlD() {

return { userNameField.getText());

} // end getUserlDO

public String getPassword() {

char[] array = passwordField.getPassword();
return (String.copyValueOf(array)) ;

} // end getPassword()

public String getURLO {

return (server) ; '

} // end getURLO

public String getDriver() {

return (driver);

} // end getDriver()

} // end class ConnectionPanel

385

import java.sql.'*;
import java.util.Vector;
import javax.swing.JOptionPane;
import j avax.swing.table.AbstractTableModel;
import j avax.swing.event.TableModelEvent;

* The JDBCAdapter class inherits from AbstractTableModel class and
* provides the TableModel implementation for retrieving the query
* results from the POET Database.
*

* @author LTJG. Yuksel Can
*/

public class JDBCAdapter extends AbstractTableModel {

Connection connection;
Statement statement;
String url, driver, userid, password;
ResultSet queryResult;
ResultSetMetaData metaData;
String[] columnNames = {};
Vector rows = new Vector() ;

public JDBCAdapter(String URL, String driverName,
String user, String passwd) {

url = URL;
driver = driverName;
userid = user;
password = passwd;

} // end JDBCAdapter()

public void connect() {

try {
Class.forName(driver);
connection = DriverManager.getConnection(url,

userid, password);
statement = connection.createStatement();

}

catch (ClassNotFoundException ex) {
System.err.println("Cannot find database driver classes");
System.err.println(ex);

}

386

catch (SQLException ex) {
System.err.printin("Cannot connect to this database.");
System.err.println(ex) ;

}

} // end connect()

public boolean isConnectedO {

if (connection == null) {
return false;

}
else {

return true;

} // end if

} // end isConnectedO

public void executeQuery(String query) throws NullPointerException {

if(connection == null I I statement == null) {

System.err.println("Unable to execute query. " +
"No connection exists");

}

else {

try {

queryResult = statement.executeQuery(query);
metaData = queryResult.getMetaData ();

}

catch (SQLException ex) {

JOptionPane.showMessageDialog(null,
"SQLException: " +

JOptionPane.ERROR_MESSAGE <);
}

} // end if

try {

ex.getMessage(),
"SQL Error",

387

int numberOfColumns = metaData.getColumnCount();

columnNames = new String[numberOfColumns];

for (int column = 0; column < numberOfColumns;
column++) {

columnNames[column] =
metaData.getColumnLabel(

column + 1);
} // end for

rows = new Vector();

while (query-Result.next ()) {

Vector newRow = new Vector() ;

for (int i = 1; i <= getColumnCount(); i++

newRow.addElement
queryResult.getObject(i));

} // end for

rows.addElement(newRow);

} // end while

// Tell the listeners a new table has arrived.
fireTableChanged(null);

}

catch (SQLException ex) {
System.err.println(ex);

}

} // end executeQuery()

public void close() throws SQLException {

queryResult.close();
statement.close(};
connection.close();

} // end close()

protected void finalize() throws Throwable {

388

close ();
super.finali ze();

} // end of finalize()

public String getColumnName(int column) {

if (columnNames[column] != null) {
return columnNames[column];

}
else {

return "";
} // end if

} // end getColumnName()

public Class getColumnClass(int column) {

int type;
try {

type = metaData.getColumnType(column+1);
}
catch (SQLException e) {

return super.getColumnClass(column);
}

switch(type) {
case Types.CHAR:
case Types.VARCHAR:
case Types.LONGVARCHAR:

return String.class;

case Types.BIT:
return Boolean.class;

case Types.TINYINT:
case Types.SMALLINT:
case Types.INTEGER:

return Integer.class;

case Types.BIGINT:
return Long.class;

case Types.FLOAT:
case Types.DOUBLE:

return Double.class;

case Types.DATE:
return java.sql.Date.class;

default:

389

return Object.class;
}

} // end getColumnClass()

public boolean isCellEditable(int row, int column) {

try {
return metaData.isWritable(column+1) ;

}
catch (SQLException e) {

return false;
}

} // end isCellEditable(}

public int getColumnCount() {

return columnNames.length;

} // end getColumnCount()

public int getRowCount() {

return rows.size();

} // end getRowCount()

public Object getValueAt(int aRow, int aColumn) {

Vector row = (Vector)rows.elementAt(aRow);
return row.elementAt(aColumn);

} // end getValueAt()

public String dbRepresentation(int column, Object value) {
int type;

if (value == null) {
return "null";

}

try {
type = metaData.getColumnType(column+1);

}

390

catch (SQLException e) {
return value.toString();

}

switch(type) {
case Types.INTEGER:

case Types.DOUBLE:
case Types.FLOAT:

return value.toString();

case Types.BIT:
return ((Boolean)value).booleanValue() ? "1" : "0";

case Types.DATE:
return value.toString();

default:
return "\"" + value.toString() + "\"";

} // end switch

} // end dbRepresentationO

public void setValueAt(Object value, int row, int column) {
try {

String tableName = metaData.getTableName(column+1);

if (tableName == null) {
System.out.println("Table name returned null.");

}

String columnName = getColumnName(column);
String query =

"update " + tableName +
" set " + columnName + " = " +

dbRepresentation(column, value)
" where ";

// We don't have a model of the schema so we don't know the
// primary keys or which columns to lock on. To demonstrate
// that editing is possible, we'll just lock on everything,
for(int col = 0; col < getColumnCount(); col++) {

String colName = getColumnName(col);
if (colName.equals("")) {

continue;
}
if (col != 0) {

query = query + " and ";
}
query = query + colName + " = " +

dbRepresentation(col, getValueAt (row, col));
}

391

System.out.printin(query);
System.out.printin("Not sending update to database");
statement.executeQuery(query) ;

}

catch (SQLException e) {
e.printStackTrace() ;
System.err.println("Update failed");

}

Vector dataRow = (Vector)rows.elementAt(row);
dataRow.setElementAt(value, column);

} // end setValueAtO

} // end class JDBCAdapter

392

import j avax.swing.*;
import j ava.awt.*;

/**
* The AssignmentForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Assignments Table in the POET Database.
*
* @author LTJG. Yuksel Can
*/

public class AssignmentForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militarylDField;
JLabel militarylDLabel;

JTextField numberField;
JLabel numberLabel;

JTextField stationField;
JLabel stationLabel;

JTextField positionField;
JLabel positionLabel;

JTextField durationField;
JLabel durationLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

public AssignmentForm(String title) {

super(title);

militarylDField = new JTextField(25);
militarylDLabel = new JLabel(" Personnel Military ID : ") ;

numberField = new JTextField(25);
numberLabel = new JLabel(" Assignment Number : ");

stationField = new JTextField(25);
stationLabel = new JLabel(" Station Name : ");

393

positionField = new JTextField(25);
positionLabel = new JLabelf Position Name : ")

durationField = new JTextField(25);
durationLabel = new JLabel(" Duration (Years) :

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(militarylDLabel) ;
namePanel.add(numberLabel);
namePanel.add(stationLabel);
namePanel.add(positionLabel);
namePanel.add(durationLabel);

fieldPanel.add(militarylDField) ;
fieldPanel.add(numberField);
fieldPanel.add(stationField);
fieldPanel.add(positionField) ;
fieldPanel.add(durationField) ;

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor) ;

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor) ;

cancelButton = new JButton("CANCEL") ;
cancelButton.setBackground(buttonColor) ;

buttonPa'nel = new JPanel () ;
buttonPanel.add(addButton);
buttonPanel.add(deleteButton)
buttonPanel.add(updateButton)
buttonPanel.add(cancelButton)

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH)
this.show();

} // end AssignmentFormO

} // end class AssignmentForm

394

import javax.swing.*;
import j ava.awt.*;

* The CourseTakenForm class inherits from the JFrame class and
* provides a graphical representation, which consists of .labels,
* fields, and combo boxes, for the CoursesTaken Table in the
* POET Database.
*
* @author LTJG. Yuksel Can
*/

public class CourseTakenForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militarylDField;
JLabel militarylDLabel;

JTextField courseField;
JLabel courseLabel;

JTextField startDateField;
JLabel startDateLabel;

JTextField endDateField;
JLabel endDateLabel;

JTextField gradeField;
JLabel gradeLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

public CourseTakenForm(String title) {

super(title);

militarylDField = new JTextField(25);
militarylDLabel = new JLabel(" Personnel Military ID : ");

courseField = new JTextField(25) ;
courseLabel = new JLabel(" Course Name : ");

startDateField = new JTextField(25);
startDateLabel = new JLabel(" Course Start Date : ");

395

endDateField = new JTextField(25);
endDateLabel = new JLabel(" Course End Date : ");

gradeField = new JTextField(25);
gradeLabel = new JLabel(" Course Grade (1..100) : ") ;

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1)) ;

namePanel.add(militarylDLabel);
namePanel.add(courseLabel);
namePanel.add(startDateLabel);
namePanel.add(endDateLabel);
namePanel.add(gradeLabel);

fieldPanel.add(militarylDField);
fieldPanel.add(courseField);
fieldPanel.add(startDateField);
fieldPanel.add(endDateField);
fieldPanel.add(gradeField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL") ;
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end CourseTakenFormO

} // end class CourseTakenForm

396

import javax.swing.*;
import j ava.awt.*;

/**

* The CourseToTakeForm class inherits from the JFrame class and
* provides a graphical representation, which consists of labels,
* fields, and combo boxes, for the CoursesToTake Table in the
* POET Database.
*

* @author LTJG. Yuksel Can
*/

public class CourseToTakeForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militarylDField;
JLabel militarylDLabel;

JTextField courseField;
JLabel courseLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

public CourseToTakeForm(String title) {

super(title);

militarylDField = new JTextField(25);
militarylDLabel = new JLabel(" Personnel Military ID : ");

courseField = new JTextField(25);
courseLabel = new JLabel(" Course Name : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(militarylDLabel);
namePanel.add(courseLabel);

397

fieldPanel.add(militarylDField);
fieldPanel.add(courseField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton)
buttonPanel.add(updateButton)
buttonPanel.add(cancelButton)

this.setSize(800, 600);
this . get'ContentPane () . setLayout (new BorderLayout ()) ;
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH)
this.show();

} // end CourseToTakeForm(

} // end class CourseToTakeForm

398

import j avax.swing.*;
import j ava.awt.*;

/**
* The EquipmentForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Equipment Table in the POET Database.
*
* @author LTJG. Yuksel Can
*/

public class EquipmentForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField serialNumberField;
JLabel serialNumberLabel;

JTextField stockNumberField;
JLabel stockNumberLabel;

JTextField nameField;
JLabel nameLabel;

JComboBox typeField;
JLabel typeLabel;

JTextField dateField;
JLabel dateLabel;

JTextField manufacturerField;
JLabel manufacturerLabel;

JTextField modelField;
JLabel modelLabel;

JTextField locationField;
JLabel locationLabel;

JTextField runtimeField;
JLabel runtimeLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

399

static String[] type = { "COMMUNICATIONS", "RADAR",
"ELECRONIC WARFARE", "NAVIGATION",
"WEAPONS", "ENGINE" };

public EquipmentForm(String title) {

super(title);

serialNumberField = new JTextField(25);
serialNumberLabel = new JLabel(" Serial Number : ");

stockNumberField = new JTextField(25);
stockNumberLabel = new JLabel(" Stock Number : ");

nameField = new JTextField(2o);
nameLabel = new JLabel(" Equipment Name : ");

typeField = new JComboBox(type);
typeField.setEditable(false);
typeLabel = new JLabel(" Equipment Type : ");

dateField = new JTextField(25);
dateLabel = new JLabel(" Production Date : ");

manufacturerField = new JTextField(25);
manufacturerLabel = new JLabel(" Manufacturer : ");

modelField = new JTextField(25);
modelLabel = new JLabel(" Equipment Model : ");

locationField = new JTextField(25);
locationLabel = new JLabel(" Equipment Location: ");

runtimeField = new JTextField(25);
runtimeLabel = new JLabel(" Equipment Runtime (Hours) : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(serialNumberLabel);
namePanel.add(stockNumberLabel);
namePanel.add(nameLabel);
namePanel.add(typeLabel);
namePanel.add(dateLabel);
namePanel.add(manufacturerLabel);
namePanel.add(modelLabel);
namePanel.add(locationLabel);
namePanel.add(runtimeLabel);

400

fieldPanel.add(serialNumberField);
fieldPanel.add(stockNumberField);
fieldPanel.add(nameField);
fieldPanel.add(typeField);
fieldPanel.add(dateField);
fieldPanel.add(manufacturerField);
fieldPanel.add(modelField);
fieldPanel.add(locationField);
fieldPanel.add(runtimeField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor) ;

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor) ;

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor) ;

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton) ;
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end EquipmentForm()

} // end class EquipmentForm

401

import javax.swing.*;
import java.awt.*;

* The EventForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Events Table in the POET Database.
*
* @author LTJG. Yuksel Can
*/

public class EventForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField exerciseField;
JLabel exerciseLabel;

JTextField eventField;
JLabel eventLabel;

JComboBox typeField;
JLabel typeLabel;

JTextField numberField;
JLabel numberLabel;

JTextField durationField;
JLabel durationLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

static String[] type = { "ANTISURFACE WARFARE",

. "ANTISUBMARINE WARFARE",

"ANTIAIR WARFARE", "COMMUNICATIONS",

"ELECTRONIC WARFARE", "MISCELLANEOUS" };

public EventForm(String title) {

super(title) ;

402

exerciseField = new JTextField(25) ;
exerciseLabel = new JLabeK" Exercise Name : ");

eventField = new JTextField(25);
eventLabel = new JLabeK" Event Name : ");

typeField = new JComboBox(type);'
typeField.setEditable(false);
typeLabel = new JLabeK" Event Type : ") ;

numberField = new JTextField(25);
numberLabel = new JLabeK" Number Of Events : ") ;

durationField = new JTextField(25);
durationLabel = new JLabeK" Event Duration (Hours]

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(exerciseLabel);
namePanel.add(eventLabel);
namePanel.add(typeLabel);
namePanel.add(numberLabel);
namePanel.add(durationLabel);

fieldPanel.add(exerciseField);
fieldPanel.add(eventField);
fieldPanel.add(typeField);
fieldPanel.add(numberField);
fieldPanel.add(durationField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
'box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);

403

buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize (800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH)
this.show();

} // end EventForml

} // end class EventForra

404

import javax.swing.*;
import java.awt.*;

/**
* The FailureForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Failures Table in the POET Database.
*
* @author LTJG. Yuksel Can
*/

public class FailureForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField serialField;
JLabel serialLabel;

JTextField failureField;
JLabel failureLabel;

JTextField descriptionField;
JLabel des'criptionLabel;

JTextField diagnosisField;
JLabel diagnosisLabel;

JTextField dateField;
JLabel dateLabel;

JTextField durationField;
JLabel durationLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

public FailureForm(String title) {

super(title);

serialField = new JTextField(25);
serialLabel = new JLabel(" Equipment Serial Number : ");

failureField = new JTextField(25) ;
failureLabel = new JLabel(" Failure Number : ");

405

descriptionField = new JTextField(25);
descriptionLabel = new JLabel(" Failure Description : ");

diagnosisField = new JTextField(25);
diagnosisLabel = new JLabel(" Failure Diagnosis : ");

dateField = new JTextField(25);
dateLabel = new JLabel(" Failure-Date : ");

durationField = new JTextField(25);
durationLabel = new JLabel(" Failure Duration (Hours) : "]

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(serialLabel);
namePanel.add(failureLabel);
namePanel.add(descriptionLabel);
namePanel.add(diagnosisLabel);
namePanel.add(dateLabel);
namePanel.add(durationLabel);

fieldPanel.add(serialField);
fieldPanel.add(failureField);
fieldPanel.add(descriptionField);
fieldPanel.add(diagnosisField);
fieldPanel.add(dateField);
fieldPanel.add(durationField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

406

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout ());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH)
this.show();

} // end FailureFormC

} // end class FailureForm

407

import javax.swing.*;
import j ava.awt.*;

* The LanguageForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the ForeignLanguages Table in the POET Database.
*

* @author LTJG. Yuksel Can
*/

public class LanguageForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militarylDField;
JLabel militarylDLabel;

JComboBox languageField;
JLabel languageLabel;

JComboBox degreeField;
JLabel degreeLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

static String[] language = { "English", "French", "German",
"Spanish", "Russian", "Japanese",
"Turkish", "Chinese" };

static Stringf] degree = { "A", "B", "C", "D", "F" };

public LanguageForm(String title) {

super(title);

militarylDField = new JTextField(25);
militarylDLabel = new JLabel(" Personnel Military ID : ");

languageField = new JComboBox(language);
languageField.setEditable(true);
languageLabel = new JLabel(" Foreign Language : ");

408

degreeField = new JComboBox(degree);
degreeField.setEditable(false);
degreeLabel = new JLabel(" Degree : ")';

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1))

namePanel.add(militarylDLabel);
namePanel.add(languageLabel);
namePanel.add(degreeLabel);

fieldPanel.add(militarylDField);
fieldPanel.add(languageField);
fieldPanel.add(degreeField) ;

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
th-is. getContentPane () . setLayout (new BorderLayout ()) ;
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH) ;
this.show();

} // end LanguageForm ()

} // end class LanguageForm

409

import javax.swing.*;
import j ava.awt.*;

* The OperationForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Operation Table in the POET Database.

* @author LTJG. Yuksel Can
*/

public class OperationForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField nameField;
JLabel nameLabel;

JComboBox typeField;
JLabel typeLabel;

JTextField startDateField;
JLabel startDateLabel;

JTextField endDateField;
JLabel endDateLabel;

JTextField durationField;
JLabel durationLabel;

JTextField placeField;
JLabel placeLabel;

JTextField daytimeField;
JLabel daytimeLabel;

JTextField nighttimeField;
JLabel nighttimeLabel;

JTextField heloField;
JLabel heloLabel;

JTextField flyingField;
JLabel flyingLabel;

JTextField dippingNumberField;
JLabel dippingNumberLabel;

JTextField dippingTimeField;
JLabel dippingTimeLabel;

410

JTextField fuelCostField;
JLabel fuelCostLabel;

JTextField ammoCostField;
JLabel ammoCostLabel;

JTextField amortizationField;
JLabel amortizationLabel;

JTextField costField;
JLabel costLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

static String[] type = { "INDEPENDENT", "TYPE EXERCISE",

"SQUADRON EXERCISE", "FLEET EXERCISE" };

public OperationForm(String title) {

super(title);

nameField = new JTextField(25);
nameLabel = new JLabel(" Exercise Name : ");

typeField = new JComboBox(type);
typeField.setEditable(false);
typeLabel = new JLabel(" Exercise Type : ");

startDateField = new JTextField(25);
startDateLabel = new JLabel(" Start Date : ");

endDateField = new JTextField(25);
endDateLabel = new JLabel(" End Date : ");

durationField = new JTextField(25);
durationLabel = new JLabel(" Duration (Days) : ");

placeField = new JTextField(25);
placeLabel = new JLabel(" Place (Sea/Ocean): ");

daytimeField = new JTextField(25);
daytimeLabel = new JLabel(" Daytime Underway Hours : ");

nighttimeField = new JTextField(25);
nighttimeLabel = new JLabel(" Nighttime Underway Hours : ");

411

heloField = new JTextField(25);
heloLabel = new JLabel(" Helo Tail Number : ");

flyingField = new JTextField(25);
flyingLabel = new JLabel(" Helo Flying Time (Hours) : ");

dippingNumberField = new JTextField(25);
dippingNumberLabel = new JLabel(" Number Of Dippings : ");

dippingTimeField = new JTextField(25);
dippingTimeLabel = new JLabel(" Total Dipping Time (Hours)

fuelCostField = new JTextField(25);
fuelCostLabel = new JLabel(" Fuel Cost : ");

ammoCostField = new JTextField(25);
ammoCostLabel = new JLabel(" Ammunition Cost : ");

amortizationField = new JTextField(25);
amortizationLabel = new JLabel(" Amortization : ");

costField = new JTextField(25);
costLabel = new JLabel(" Cost Of Exercise : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(nameLabel);
namePanel.add(typeLabel);
namePanel.add(startDateLabel);
namePanel.add(endDateLabel);
namePanel.add(durationLabel);
namePanel.add(placeLabel);
namePanel.add(daytimeLabel);
namePanel.add(nighttimeLabel);
namePanel.add(heloLabel) ;
namePanel.add(flyingLabel);
namePanel.add(dippingNumberLabel);
namePanel.add(dippingTimeLabel);
namePanel.add(fuelCostLabel);
namePanel.add(ammoCostLabel);
namePanel.add(amortizationLabel);
namePanel.add(costLabel);

fieldPanel.add(nameField);
fieldPanel.add(typeField);
fieldPanel.add(startDateField);
fieldPanel.add(endDateField);
fieldPanel.add(durationField);
fieldPanel.add(placeField);
fieldPanel.add(daytimeField);
fieldPanel.add(nighttimeField);

412

fieldPanel.add(heloField);
fieldPanel.add(flyingField);
fieldPanel.add(dippingNumberField);
fieldPanel.add(dippingTimeField);
fieldPanel.add(fuelCostField);
fieldPanel.add(ammoCostField);
fieldPanel.add(amortizationField);
fieldPanel.add(costField) ;

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButtonC'ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH)
this.show();

} // end OperationFormC

} // end class OperationForm

413

import javax.swing.*;
import j ava.awt.*;

/**

* The OverhaulForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Overhaul Table in the POET Database.
*

* Sauthor LTJG. Yuksel Can
*/

public class OverhaulForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JComboBox shipField;
JLabel shipLabel;

JTextField numberField;
JLabel numberLabel;

JTextField startDateField;
JLabel startDateLabel;

JTextField endDateField;
JLabel endDateLabel;

JTextField durationField;
JLabel durationLabel;

JTextField shipyardField;
JLabel shipyardLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

static String[] ship = { "TBUP" };

public OverhaulForm(String title) {

super(title);

shipField = new JComboBox(ship);
shipField.setEditable(false) ;
shipLabel = new JLabel(" Ship's Int'l Callsign : ");

414

numberField = new JTextField(25);
numberLabel = new JLabel(" Overhaul Number : ");

startDateField = new JTextField(25) ;
startDateLabel = new JLabel(" Overhaul Start Date : ");

endDateField = new JTextField(25);
endDateLabel = new JLabel{" Overhaul End Date : ");

durationField = new JTextField(25) ;
durationLabel = new JLabel(" Overhaul Duration (Days) : ");

shipyardField = new JTextField(25);
shipyardLabel = new JLabel(" Shipyard Name : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1)) ;
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(shipLabel);
namePanel.add(numberLabel) ;
namePanel.add(startDateLabel);
namePanel.add(endDateLabel) ;
namePanel.add(durationLabel);
namePanel,add(shipyardLabel);

fieldPanel.add(shipField);
fieldPanel.add(numberField);
fieldPanel.add(startDateField);
fieldPanel.add(endDateField);
fieldPanel.add(durationField);
fieldPanel.add(shipyardField);

box = new Box(BoxLayout.X_AXIS) ;
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor) ;

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL") ;
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);

415

buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane{).add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end OverhaulFormd

} // end class OverhaulForra

416

import javax.swing.*;
import j ava.awt.*;

/**
* The PersonnelForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Personnel Table in the POET Database.
*
* @author LTJG. Yuksel Can
*/

public class PersonnelForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField militarylDField;
JLabel militarylDLabel;

JTextField firstNameField;
JLabel firstNameLabel;

JTextField lastNameField;
JLabel lastNameLabel;

JComboBox departmentField;
JLabel departmentLabel;

JComboBox divisionField;
JLabel divisionLabel;

JComboBox rankField;
JLabel rankLabel;

JComboBox ratingField;
JLabel ratingLabel;

JTextField birthDateField;
JLabel birthDateLabel;

JTextField birthPlaceField;
JLabel birthPlaceLabel;

JTextField fatherField;
JLabel fatherLabel;

JTextField motherField;
JLabel motherLabel;

JTextField serviceDateField;
JLabel serviceDateLabel;

JTextField rankDateField;

417

JLabel rankDateLabel;

JComhoBox genderField;
JLabel genderLabel;

JComboBox maritalField;
JLabel maritalLabel;

JTextField spouseField;
JLabel spouseLabel;

JTextField childrenField;
JLabel childrenLabel;

JTextField streetField;
JLabel streetLabel;

JTextField cityField;
JLabel cityLabel;

JTextField stateField;
JLabel stateLabel;

JTextField zipField;
JLabel zipLabel;

JTextField phoneField;
JLabel phoneLabel;

JTextField specialityField;
JLabel specialityLabel;

JComboBox educationField;
JLabel educationLabel;

JTextField assignmentField;
JLabel assignmentLabel;

JTextField startDateField;
JLabel startDateLabel;

JTextField cabinNumberField;
JLabel cabinNumberLabel;

JTextField cabinPhoneField;
JLabel cabinPhoneLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

418

Color buttonColor = new Color(160, 220, 245);

static String[] department = { "Operations", "Engineering",

"Weapons", "Electronics",

"Navigation", "Supply" };

static String[] division = { "CIC", "Communications",

"Electronic Warfare",

"Main Propulsion", "Electrical",

"Damage Control",

"Anti Surface Warfare",

"Anti Submarine Warfare",

"Anti Air Warfare", "Fire Control",

"Weapons Electronics",

"CIC Electronics",

"Communications Electronics",

"Administration", "Navigation",

"Deck", "Supply", "Medical" };

static String[] rank = { "ENSIGN", "LTJG", "LIEUTENANT",

"LTCDR", "COMMANDER", "CAPTAIN",

"PETTY OFFICER 2ND CLASS",

"PETTY OFFICER 1ST CLASS",

"CHIEF PETTY OFFICER 2ND CLASS",

"CHIEF PETTY OFFICER",

"SENIOR CHIEF PETTY OFFICER",

"MASTER CHIEF PETTY OFFICER" };

static String[] rating = { "OFFICER", "PETTY OFFICER",

"ENLISTED" };

static String[] gender = { "MALE", "FEMALE" };

419

static String[] marital = { "SINGLE", "MARRIED" } ;

static String[] education = { "HIGH SCHOOL", "COLLEGE",

"UNIVERSITY", "MASTER" };

public PersonnelForm(String title) {

super(title);

militarylDField = new JTextField(25);
militarylDLabel = new JLabel(" Military ID : ");

firstNameField = new JTextField(25);
firstNameLabel = new JLabel(" First Name : ");

lastNameField = new JTextField(25) ;
lastNameLabel = new JLabel(" Last Name : ");

departmentField = new JComboBox(department);
departmentField.setEditable(false);
departmentLabel = new JLabel(" Department : ");

divisionField = new JComboBox(division) ;
divisionField.setEditable(false);
divisionLabel = new JLabelf" Division : ") ;

rankField = new JComboBox(rank);
rankField.setEditable(false);
rankLabel = new JLabel (" Rank : ");

ratingField = new JComboBox(rating);
ratingField.setEditable(false);
ratingLabel = new JLabel(" Rating : ");

birthDateField = new JTextField(25);
birthDateLabel = new JLabel(" Date Of Birth : ");

birthPlaceField = new JTextField(25);
birthPlaceLabel = new JLabelf" Place Of Birth : ");

fatherField = new JTextField(25) ;
fatherLabel = new JLabel(" Father's Name : ");

motherField = new JTextField(25);
motherLabel = new JLabel(" Mother's Name : ");

serviceDateField = new JTextField(25);
serviceDateLabel = new JLabel(" Active Duty Service Date

rankDateField = new JTextField(25) ;
rankDateLabel = new JLabel(" Date Of Rank : ");

420

genderField = new JComboBox(gender);
genderField.setEditable(false);
genderLabel = new JLabeK" Gender : ");

maritalField = new JComboBox(marital);
maritalField.setEditable(false);
maritalLabel = new JLabel(" Marital Status : ");

spouseField = new JTextField(25) ;
spouseLabel = new JLabeK" Spouse's Name : ");

childrenField = new JTextField(25);
childrenLabel = new JLabeK" Number Of Children : ");

streetField = new JTextField(25) ;
streetLabel = new JLabeK" Street : ");

cityField = new JTextField(25) ;
cityLabel = new JLabeK" City : ");

stateField = new JTextField(25);
stateLabel = new JLabeK" State : ");

zipField = new JTextField(25);
zipLabel = new JLabel(" Zip Code : ");

phoneField = new JTextField(25);
phoneLabel = new JLabel(" Phone Number : ");

specialityField = new JTextField(25);
specialityLabel = new JLabel(" Speciality : ");

educationField = new JComboBox(education) ;
educationField.setEditable(false) ;
educationLabel = new JLabel(" Education : ");

assignmentField = new JTextField(25);
assignmentLabel = new JLabel(" Current Assignment : "]

startDateField = new JTextField(25) ;
startDateLabel = new JLabeK" Start Date : ") ;

cabinNumberField = new JTextField(25);
cabinNumberLabel = new JLabeK" Cabin Number : ");

cabinPhoneField = new JTextField(25);
cabinPhoneLabel = new JLabel(" Cabin Phone : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(militarylDLabel) ;

421

naraePanel.add(firstNameLabel);
namePanel.add(lastNameLabel);
namePanel.add(departmentLabel);
namePanel.add(divisionLabel);
namePanel.add(rankLabel) ;
namePanel.add(ratingLabel) ;
namePanel.add(birthDateLabel);
namePanel.add(birthPlaceLabel);
namePanel.add(fatherLabel) ;
namePanel.add(motherLabel) ;
namePanel.add(serviceDateLabel);
namePanel.add(rankDateLabel);
namePanel.add(genderLabel);
namePanel.add(maritalLabel);
namePanel.add(spouseLabel) ;
namePanel.add(childrenLabel);
namePanel.add(streetLabel) ;
namePanel.add{cityLabel) ;
namePanel.add(stateLabel) ;
namePanel.add(zipLabel);
namePanel.add(phoneLabel) ;
namePanel.add(specialityLabel);
namePanel.add(educationLabel);
namePanel.add(assignmentLabel);
namePanel.add(startDateLabel);
namePanel.add(cabinNumberLabel) ;
namePanel.add(cabinPhbneLabel);

fieldPanel.add(militarylDField) ;
fieldPanel.add(firstNameField) ;
fieldPanel.add(lastNameField);
fieldPanel.add(departmentField) ;
fieldPanel.add(divisionField);
fieldPanel.add(rankField) ;
fieldPanel.add(ratingField) ;
fieldPanel.add(birthDateField);
fieldPanel.add(birthPlaceField) ;
fieldPanel.add(fatherField);
fieldPanel.add(motherField);
fieldPanel.add(serviceDateField) ;
fieldPanel.add(rankDateField);
fieldPanel.add(genderField);
fieldPanel.add(maritalField);
fieldPanel.add(spouseField);
fieldPanel.add(childrenField);
fieldPanel.add(streetField);
fieldPanel.add(cityField) ;
fieldPanel.add(stateField) ;
fieldPanel.add(zipField);
fieldPanel.add(phoneField);
fieldPanel.add(specialityField);
fieldPanel.add(educationField);
fieldPanel.add(assignmentField) ;
fieldPanel.add(startDateField);
fieldPanel.add(cabinNumberField);

422

fieldPanel.add(cabinPhoneField) ;

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel) ;
box.add(fieldPanel) ;

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanelO;
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end PersonnelFormO

} // end class PersonnelForm

423

import javax.swing.*;
import j ava.awt.*;

/**

* The PortVisitForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the PortVisits Table in the POET Database.
*
* Sauthor LTJG. Yuksel Can
*/

public class PortVisitForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField exerciseField;
JLabel exerciseLabel;

JTextField portField;
JLabel portLabel;

JTextField startDateField;
JLabel startDateLabel;

JTextField endDateField;
JLabel endDateLabel;

JTextField durationField;
JLabel durationLabel;

JPanel buttonPanel;
JButton addButton;
JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

public PortVisitForm(String title) {

super(title);

exerciseField = new JTextField(25) ;
exerciseLabel = new JLabel(" Exercise Name : ") ;

portField = new JTextField(25) ;
portLabel = new JLabel(" Port Name : ");

startDateField = new JTextField(25) ;
startDateLabel = new JLabel(" Visit Start Date : ");

endDateField = new JTextField(25);

424

endDateLabel = new JLabeK" Visit End Date : ");

durationField = new JTextField(25);
durationLabel = new JLabel(" Visit Duration (Days) : ");

namePanel = new JPanel();
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel.setLayout(new GridLayout(0, 1));

namePanel.add(exerciseLabel) ;
namePanel.add(portLabel) ;
namePanel.add(startDateLabel) ;
namePanel.add(endDateLabel) ;
namePanel.add(durationLabel);

fieldPanel.add(exerciseField) ;
fieldPanel.add(portField);
fieldPanel.add(startDateField);
fieldPanel.add(endDateField) ;
fieldPanel.add(durationField) ;

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButton("ADD RECORD");
addButton.setBackground(buttonColor) ;

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor) ;

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor) ;

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor) ;

buttonPanel = new JPanel();
buttonPanel.add(addButton) ;
buttonPanel.add(deleteButton) ;
buttonPanel.add(updateButton) ;
buttonPanel.add(cancelButton) ;

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout{)) ;
this.getContentPane().add(box, BorderLayout.CENTER) ;
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end PortVisitFormO

} // end class PortVisitForm

425

import javax.swing.*;
import j ava.awt.*;

/**

* The TrainingForm class inherits from the JFrame class and provides
* a graphical representation, which consists of labels, fields, and
* combo boxes, for the Training Table in the POET Database.
*

* @author LTJG. Yuksel Can
*/

public class TrainingForm extends JFrame {

Box box;
JPanel namePanel;
JPanel fieldPanel;

JTextField nameField;
JLabel nameLabel;

JComboBox placeField;
JLabel placeLabel;

JTextField durationField;
JLabel durationLabel;

JTextField descriptionField;
JLabel descriptionLabel;

JPanel buttonPanel;
JButton addButton;

■ JButton deleteButton;
JButton updateButton;
JButton cancelButton;

Color buttonColor = new Color(160, 220, 245);

static String[] place = { "YILDIZLAR TRAINING CENTER",
"KARAMURSEL TRAINING CENTER",
"DERINCE TRAINING CENTER" };

public TrainingForm(String title) {

super(title);

nameField = new JTextField(25);
nameLabel = new JLabel(" Course Name : ");

placeField = new JComboBox(place);
placeField.setEditable(false);
placeLabel = new JLabel(" Training Center : ");

426

durationField = new JTextField{25);
durationLabel = new JLabel(" Course Duration (Weeks) : ");

descriptionField = new JTextField(25);
descriptionLabel = new JLabeK" Course Description : ");

namePanel = new JPanelO;
fieldPanel = new JPanel();

namePanel.setLayout(new GridLayout(0, 1));
fieldPanel. setLayout(new GridLayout(0, 1));

namePanel.add(nameLabel);
namePanel.add(placeLabel);
namePanel.add(durationLabel) ;
namePanel.add(descriptionLabel);

fieldPanel.add(nameField);
fieldPanel.add(placeField);
fieldPanel.add(durationField);
fieldPanel.add(descriptionField);

box = new Box(BoxLayout.X_AXIS);
box.add(namePanel);
box.add(fieldPanel);

addButton = new JButtonC'ADD RECORD");
addButton.setBackground(buttonColor);

deleteButton = new JButton("DELETE RECORD");
deleteButton.setBackground(buttonColor);

updateButton = new JButton("UPDATE RECORD");
updateButton.setBackground(buttonColor);

cancelButton = new JButton("CANCEL");
cancelButton.setBackground(buttonColor);

buttonPanel = new JPanel();
buttonPanel.add(addButton);
buttonPanel.add(deleteButton);
buttonPanel.add(updateButton);
buttonPanel.add(cancelButton);

this.setSize(800, 600);
this.getContentPane().setLayout(new BorderLayout());
this.getContentPane().add(box, BorderLayout.CENTER);
this.getContentPane().add(buttonPanel, BorderLayout.SOUTH);
this.show();

} // end TrainingForm()

} // end class TrainingForm

427

THIS PAGE INTENTIONALLY LEFT BLANK

428

LIST OF REFERENCES

1. Elmasri, R., and Navathe, S. B., Fundamentals of Database Systems, 2nd Edition,
Addison-Wesley Publishing Company, Inc., 1994.

2. Date, C. J., An Introduction to Database Systems, 5th Edition, Addison-Wesley
Publishing Company, Inc., 1990.

3. Kroenke, D. M., Database Processing, Fundamentals, Design, and
Implementation, 6th Edition, Prentice Hall, 1998.

4. Akin, R., and O'Brian, F.P., Analysis of Java Distributed Architectures in
Designing and Implementing a Client/Server Database System, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1998.

5. Akbay, M., and Lewis, S.C., Design and Implementation of an Enterprise
Information System Utilizing a Component Based Three-Tier Client/Server Database
System, Master's Thesis, Naval Postgraduate School, Monterey, California, March 1999.

6. Teorey, T. J., Database Modeling and Design: The Fundamental Principles, 2nd

Edition, Morgan Kaufmann Publishers, Inc., 1994.

7. Cassel, P., Teach Yourself Access 97 in 14 Days, 4th Edition, Sams Publishing,
1996.

8. Prague, C. N., and Irwin, M. R., Access 97 Bible, IDG Books Worldwide, Inc.,
1997.

9. Hammer, M., and McLeod, D., Database Description with SDM: A Semantic
Database Model, ACM Transactions on Database Systems, Vol. 6, No. 3, September
1981.

10. Hamilton, G., Cartel, R., Fisher, M., JDBC Database Access with Java, Addison-
Wesley Publishing Company, Inc., 1997.

11. Horstmann, C. S., and Cornell, G., Core Java 2, Sun Microsystems, 1999.

12. JavaSoft, JDBC: A Java SQL API, Sun Microsystems, January 1997.

13. Senn, James A., Analysis and Design of Information Systems, McGraw-Hill Book
Company, 1984.

429

14. Daft, R. L., Organization Theory and Design, 6th Edition, South-Western College
Publishing, 1998.

15. Whitten, J.L., Bentley, L.D., Barlow, V.M., Systems Analysis and Design
Methods, 3rd Edition, Irwin, 1994.

16. Danziger, J. N., and Kraemer, K. L., People and Computers, Columbia University
Press, 1986.

430

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Road, Ste 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. Deniz Kuwetleri Komutanligi 1

Personel Daire Baskanligi

Bakanliklar

Ankara, TURKEY

4. Deniz Kuwetleri Komutanligi 1

Kutuphanesi

Bakanliklar

Ankara, TURKEY

5. Deniz Harp Okulu 2

Kutuphanesi

Tuzla

Istanbul, TURKEY

6. Chairman, Code CS 1

Naval Postgraduate School

Monterey, CA 93943-5101

431

7. Chairman, Code SM 1

Naval Postgraduate School

Monterey, CA 93943-5101

8. Prof. C. Thomas Wu (CS/Wu) , 1

Naval Postgraduate School

Monterey, CA 93943-5100

9. Prof. Lee Edwards (SM/Ed) 1

Naval Postgraduate School

Monterey, CA 93943-5100

10. Yazilim Gelistirme Grup Baskanligi 1

Deniz Harp Okulu Komutanligi

Tuzla

Istanbul, TURKEY

11. LTJG. Yuksel Can 2

Findikli Mahallesi

Limon Sokak No: 14 Daire 3

Maltepe

Istanbul, TURKEY

432

